42 research outputs found

    Oval Domes: History, Geometry and Mechanics

    Get PDF
    An oval dome may be defined as a dome whose plan or profile (or both) has an oval form. The word Aoval@ comes from the latin Aovum@, egg. Then, an oval dome has an egg-shaped geometry. The first buildings with oval plans were built without a predetermined form, just trying to close an space in the most economical form. Eventually, the geometry was defined by using arcs of circle with common tangents in the points of change of curvature. Later the oval acquired a more regular form with two axis of symmetry. Therefore, an “oval” may be defined as an egg-shaped form, doubly symmetric, constructed with arcs of circle; an oval needs a minimum of four centres, but it is possible also to build polycentric ovals. The above definition corresponds with the origin and the use of oval forms in building and may be applied without problem until, say, the XVIIIth century. Since then, the teaching of conics in the elementary courses of geometry made the cultivated people to define the oval as an approximation to the ellipse, an “imperfect ellipse”: an oval was, then, a curve formed with arcs of circles which tries to approximate to the ellipse of the same axes. As we shall see, the ellipse has very rarely been used in building. Finally, in modern geometrical textbooks an oval is defined as a smooth closed convex curve, a more general definition which embraces the two previous, but which is of no particular use in the study of the employment of oval forms in building. The present paper contains the following parts: 1) an outline the origin and application of the oval in historical architecture; 2) a discussion of the spatial geometry of oval domes, i. e., the different methods employed to trace them; 3) a brief exposition of the mechanics of oval arches and domes; and 4) a final discussion of the role of Geometry in oval arch and dome design

    Processing Ordinality and Quantity: The Case of Developmental Dyscalculia

    Get PDF
    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information

    Toxic epidermal necrolysis and Stevens-Johnson syndrome

    Get PDF
    Toxic epidermal necrolysis (TEN) and Stevens Johnson Syndrome (SJS) are severe adverse cutaneous drug reactions that predominantly involve the skin and mucous membranes. Both are rare, with TEN and SJS affecting approximately 1or 2/1,000,000 annually, and are considered medical emergencies as they are potentially fatal. They are characterized by mucocutaneous tenderness and typically hemorrhagic erosions, erythema and more or less severe epidermal detachment presenting as blisters and areas of denuded skin. Currently, TEN and SJS are considered to be two ends of a spectrum of severe epidermolytic adverse cutaneous drug reactions, differing only by their extent of skin detachment. Drugs are assumed or identified as the main cause of SJS/TEN in most cases, but Mycoplasma pneumoniae and Herpes simplex virus infections are well documented causes alongside rare cases in which the aetiology remains unknown. Several drugs are at "high" risk of inducing TEN/SJS including: Allopurinol, Trimethoprim-sulfamethoxazole and other sulfonamide-antibiotics, aminopenicillins, cephalosporins, quinolones, carbamazepine, phenytoin, phenobarbital and NSAID's of the oxicam-type. Genetic susceptibility to SJS and TEN is likely as exemplified by the strong association observed in Han Chinese between a genetic marker, the human leukocyte antigen HLA-B*1502, and SJS induced by carbamazepine. Diagnosis relies mainly on clinical signs together with the histological analysis of a skin biopsy showing typical full-thickness epidermal necrolysis due to extensive keratinocyte apoptosis. Differential diagnosis includes linear IgA dermatosis and paraneoplastic pemphigus, pemphigus vulgaris and bullous pemphigoid, acute generalized exanthematous pustulosis (AGEP), disseminated fixed bullous drug eruption and staphyloccocal scalded skin syndrome (SSSS). Due to the high risk of mortality, management of patients with SJS/TEN requires rapid diagnosis, evaluation of the prognosis using SCORTEN, identification and interruption of the culprit drug, specialized supportive care ideally in an intensive care unit, and consideration of immunomodulating agents such as high-dose intravenous immunoglobulin therapy. SJS and TEN are severe and life-threatening. The average reported mortality rate of SJS is 1-5%, and of TEN is 25-35%; it can be even higher in elderly patients and those with a large surface area of epidermal detachment. More than 50% of patients surviving TEN suffer from long-term sequelae of the disease

    Mechanisms of drug-induced allergic contact dermatitis. Cell Biology and Toxicology

    No full text
    Abstract Allergic contact dermatitis is induced by a wide variety of drugs that trigger speci¢c immune responses following topical exposure. Identi¢ed chemical stuctures involved in such reactions include the mercuric and thiosalicylic acid groups of thimerosal, the diphenylketone group of the anti-in£ammatory drug ketoprofen, the amide or ester structure of local anesthetics, and the sidechain and thiazolidine ring of b-lactams. The T cell responses to such compounds involve CD4 + and CD8 + ab + T lymphocytes and also CD4^/CD8^gd + T cells. Although``T helper 2'' cytokine production by drug-speci¢c human T cells from patients with allergic contact dermatitis has been described, T helper 1-like and T cytotoxic 1-like responses clearly play key roles in this cutaneous reaction
    corecore