1,115 research outputs found

    Higher twist jet broadening and classical propagation

    Full text link
    The transverse broadening of jets produced in deep-inelastic scattering (DIS) off a large nucleus is studied in the collinear limit. A class of medium enhanced higher twist corrections are re-summed to calculate the transverse momentum distribution of the produced collinear jet. In contrast to previous approaches, resummation of the leading length enhanced higher twist corrections is shown to lead to a two dimensional diffusion equation for the transverse momentum of the propagating jet. Results for the average transverse momentum obtained from this approach are then compared to the broadening expected from a classical Langevin analysis for the propagation of the jet under the action of the fluctuating color Lorentz force inside the nucleons. The set of approximations that lead to identical results from the two approaches are outlined. The relationship between the momentum diffusion constant DD and the transport coefficient q^\hat{q} is explicitly derived.Comment: 17 pages, 6 figures, revtex4, references added, typos corrected, discussion update

    Photon bremsstrahlung and diffusive broadening of a hard jet

    Get PDF
    The photon bremsstrahlung rate from a quark jet produced in deep-inelastic scattering (DIS) off a large nucleus is studied in the collinear limit. The leading medium-enhanced higher twist corrections which describe the multiple scattering of the jet in the nucleus are re-summed to all orders of twist. The propagation of the jet in the absence of further radiative energy loss is shown to be governed by a transverse momentum diffusion equation. We compute the final photon spectrum in the limit of soft photons, taking into account the leading and next-to-leading terms in the photon momentum fraction y. In this limit, the photon spectrum in a physical gauge is shown to arise from two interfering sources: one where the initial hard scattering produces an off-shell quark which immediately radiates the photon and then undergoes subsequent soft re-scattering; alternatively the quark is produced on-shell and propagates through the medium until it is driven off-shell by re-scattering and radiates the photon. Our result has a simple formal structure as a product of the photon splitting function, the quark transverse momentum distribution coming from a diffusion equation and a dimensionless factor which encodes the effect of the interferences encountered by the propagating quark over the length of the medium. The destructive nature of such interferences in the small y limit are responsible for the origin of the Landau-Pomeranchuck-Migdal (LPM) effect. Along the way we also discuss possible implications for quark jets in hot nuclear matter.Comment: 24 pages, 3 figures, Revtex

    Hard collinear gluon radiation and multiple scattering in a medium

    Full text link
    The energy loss of hard jets produced in the Deep-Inelastic scattering (DIS) off a large nucleus is considered in the collinear limit. In particular, the single gluon emission cross section due to multiple scattering in the medium is calculated. Calculations are carried out in the higher-twist scheme, which is extended to include contributions from multiple transverse scatterings on both the produced quark and the radiated gluon. The leading length enhanced parts of these power suppressed contributions are resummed. Various interferences between such diagrams lead to the Landau-Pomeranchuk-Migdal (LPM) effect. We resum the corrections from an arbitrary number of scatterings and isolate the leading contributions which are suppressed by one extra power of the hard scale Q2Q^{2}. All powers of the emitted gluon forward momentum fraction yy are retained. We compare our results with the previous calculation of single scattering per emission in the higher-twist scheme as well as with multiple scattering resummations in other schemes. It is found that the leading (1/Q21/Q^2) contribution to the double differential gluon production cross section, in this approach, is equivalent to that obtained from the single scattering calculation once the transverse momentum of the final quark is integrated out. We comment on the generalization of this formalism to Monte-Carlo routines.Comment: 30 pages, 7 figures, revtex4, typos correcte

    Dynamical frictional phenomena in an incommensurate two-chain model

    Full text link
    Dynamical frictional phenomena are studied theoretically in a two-chain model with incommensurate structure. A perturbation theory with respect to the interchain interaction reveals the contributions from phonons excited in each chain to the kinetic frictional force. The validity of the theory is verified in the case of weak interaction by comparing with numerical simulation. The velocity and the interchain interaction dependences of the lattice structure are also investigated. It is shown that peculiar breaking of analyticity states appear, which is characteristic to the two-chain model. The range of the parameters in which the two-chain model is reduced to the Frenkel-Kontorova model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    Lineage dynamics of murine pancreatic development at single-cell resolution.

    Get PDF
    Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs

    Validity and Reliability of Electronic Devices to Measure Muscular Power during Linear Weight Lifting Movements

    Get PDF
    Please click the pdf icon to download the abstracts

    Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain

    Full text link
    Kink dynamics of the damped Frenkel-Kontorova (discrete sine-Gordon) chain driven by a constant external force are investigated. Resonant steplike transitions of the average velocity occur due to the competitions between the moving kinks and their radiated phasonlike modes. A mean-field consideration is introduced to give a precise prediction of the resonant steps. Slip-stick motion and spatiotemporal dynamics on those resonant steps are discussed. Our results can be applied to studies of the fluxon dynamics of 1D Josephson-junction arrays and ladders, dislocations, tribology and other fields.Comment: 20 Plain Latex pages, 10 Eps figures, to appear in Phys. Rev.

    Measuring subdiffusion parameters

    Full text link
    We propose a method to extract from experimental data the subdiffusion parameter α\alpha and subdiffusion coefficient DαD_\alpha which are defined by means of the relation =2Dα/Γ(1+α)tα =2D_\alpha/\Gamma(1+\alpha) t^\alpha where denotes a mean square displacement of a random walker starting from x=0x=0 at the initial time t=0t=0. The method exploits a membrane system where a substance of interest is transported in a solvent from one vessel to another across a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study a diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with the derived formulas, we show a subdiffusive character of the sugar transport in gel solvent. We precisely determine the parameter α\alpha, which is smaller than 1, and the subdiffusion coefficient DαD_\alpha.Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.

    Quantum mechanics in multiply connected spaces

    Get PDF
    This paper analyses quantum mechanics in multiply connected spaces. It is shown that the multiple connectedness of the configuration space of a physical system can determine the quantum nature of physical observables, such as the angular momentum. In particular, quantum mechanics in compactified Kaluza-Klein spaces is examined. These compactified spaces give rise to an additional angular momentum which can adopt half-integer values and, therefore, may be identified with the intrinsic spin of a quantum particle.Comment: Latex 15 page
    • …
    corecore