2,112 research outputs found

    Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079

    Get PDF
    We present spectroscopic data of ionized gas in the disk--halo regions of three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength range from [\ion{O}{2}] λ\lambda3727\AA to [\ion{S}{2}] λ\lambda6716.4\AA. The inclusion of the [\ion{O}{2}] emission provides new constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We used three different methods to derive electron temperatures, abundances and ionization fractions along the slit. The increase in the [\ion{O}{2}]/Hα\alpha line ratio towards the halo in all three galaxies requires an increase either in electron temperature or in oxygen abundance. Keeping the oxygen abundance constant yields the most reasonable results for temperature, abundances, and ionization fractions. Since a constant oxygen abundance seems to require an increase in temperature towards the halo, we conclude that gradients in the electron temperature play a significant role in the observed variations in the optical line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure

    Emission Line Ratios and Variations in Temperature and Ionization State in the Diffuse Ionized Gas of Five Edge-on Galaxies

    Full text link
    We present spectroscopic observations of ionized gas in the disk-halo regions of five edge-on galaxies, covering a wavelength range from [OII] 3727A to [SII] 6716.4A. The inclusion of the [OII] emission provides additional constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We have derived electron temperatures, ionization fractions and abundances along the slit. Our data include both slit positions parallel and perpendicular to the galactic disks. This allowed us to examine variations in the line intensity ratios with height above the midplane as well as distance from the galactic centers. The observed increase in the [OII]/Halpha line ratio towards the halo seems to require an increase in electron temperature caused by a non-ionizing heating mechanism. We conclude that gradients in the electron temperature can play a significant role in the observed variations in the optical emission line ratios from extraplanar DIG.Comment: accepted for publication in ApJ, 43 pages including 26 figure

    Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling

    Get PDF
    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunnelling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chain on a Cu2_2N substrate, indicates a structural transition affecting the dz_z2^2 orbital, effectively cutting off the STM tip from the spin-flip cotunnelling path.Comment: 4 figures plus 4 supplementary figure

    Boundedness properties of fermionic operators

    Full text link
    The fermionic second quantization operator dΓ(B)d\Gamma(B) is shown to be bounded by a power Ns/2N^{s/2} of the number operator NN given that the operator BB belongs to the rr-th von Neumann-Schatten class, s=2(r1)/rs=2(r-1)/r. Conversely, number operator estimates for dΓ(B)d\Gamma(B) imply von Neumann-Schatten conditions on BB. Quadratic creation and annihilation operators are treated as well.Comment: 15 page

    Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies

    Get PDF
    Spatial variations of the [S II]/H-Alpha and [N II]/H-Alpha line intensity ratios observed in the gaseous halo of the Milky Way and other galaxies are inconsistent with pure photoionization models. They appear to require a supplemental heating mechanism that increases the electron temperature at low densities n_e. This would imply that in addition to photoionization, which has a heating rate per unit volume proportional to n_e^2, there is another source of heat with a rate per unit volume proportional to a lower power of n_e. One possible mechanism is the dissipation of interstellar plasma turbulence, which according to Minter & Spangler (1997) heats the ionized interstellar medium in the Milky Way at a rate ~ 1x10^-25 n_e ergs cm^-3 s^-1. If such a source were present, it would dominate over photoionization heating in regions where n_e < 0.1 cm^-3, producing the observed increases in the [S II]/H-Alpha and [N II]/H-Alpha intensity ratios at large distances from the galactic midplane, as well as accounting for the constancy of [S II]/[N II], which is not explained by pure photoionization. Other supplemental heating sources, such as magnetic reconnection, cosmic rays, or photoelectric emission from small grains, could also account for these observations, provided they supply to the warm ionized medium ~ 10^-5 ergs s^-1 per cm^2 of Galactic disk.Comment: 10 pages, 1 figur

    WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium

    Get PDF
    A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided here, original PS figures at link below. Accepted for publication in ApJ. More information about the WHAM project can be found at http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now contains the proper points. No other changes have been mad

    The Warm Ionized Medium in the Milky Way and Other Galaxies

    Full text link
    Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in several other galaxies show strong [NII]6563 (~H-alpha in some cases) and [SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios (e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models reproduce the observed spectra, providing extra heating beyond that supplied by photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the Perseus arm, there are similar results, with a domposition consistent with the Galactic abundance gradient. The requirements for NGC 891 are similar to the Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come about if most of the ionizing radiation is supplied by stars with T~50000 K. Either their radiation must propagate from the plane to high |z| through very little intervening matter, or else the stars are located at high |z|. The total power requirement of the extra heating is <15% of the photoionization power. [O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but [S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap

    Diffuse Ionized Gas in the Dwarf Irregular Galaxy DDO 53

    Full text link
    The spectral characteristics throughout the dwarf irregular galaxy DDO 53 are studied. The results are very similar to those for other irregular galaxies: high excitation and low values of the [SII]/Halpha ratio. The most likely ionization source is photon leakage from the classical HII regions, without any other source, although the interstellar medium of the galaxy is quite perturbed. Moreover, the physical conditions throughout the galaxy do not change very much because both the photon leakage percentage and the ionization temperature are very similar. In addition, the determined metal content for two HII regions indicates that DDO 53 is a low-metallicity galaxy.Comment: 32 pages, 9 figures, 7 tables. AJ, in pres
    corecore