2,112 research outputs found
Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079
We present spectroscopic data of ionized gas in the disk--halo regions of
three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength
range from [\ion{O}{2}] 3727\AA to [\ion{S}{2}] 6716.4\AA.
The inclusion of the [\ion{O}{2}] emission provides new constraints on the
properties of the diffuse ionized gas (DIG), in particular, the origin of the
observed spatial variations in the line intensity ratios. We used three
different methods to derive electron temperatures, abundances and ionization
fractions along the slit. The increase in the [\ion{O}{2}]/H line ratio
towards the halo in all three galaxies requires an increase either in electron
temperature or in oxygen abundance. Keeping the oxygen abundance constant
yields the most reasonable results for temperature, abundances, and ionization
fractions. Since a constant oxygen abundance seems to require an increase in
temperature towards the halo, we conclude that gradients in the electron
temperature play a significant role in the observed variations in the optical
line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure
Emission Line Ratios and Variations in Temperature and Ionization State in the Diffuse Ionized Gas of Five Edge-on Galaxies
We present spectroscopic observations of ionized gas in the disk-halo regions
of five edge-on galaxies, covering a wavelength range from [OII] 3727A to [SII]
6716.4A. The inclusion of the [OII] emission provides additional constraints on
the properties of the diffuse ionized gas (DIG), in particular, the origin of
the observed spatial variations in the line intensity ratios. We have derived
electron temperatures, ionization fractions and abundances along the slit. Our
data include both slit positions parallel and perpendicular to the galactic
disks. This allowed us to examine variations in the line intensity ratios with
height above the midplane as well as distance from the galactic centers. The
observed increase in the [OII]/Halpha line ratio towards the halo seems to
require an increase in electron temperature caused by a non-ionizing heating
mechanism. We conclude that gradients in the electron temperature can play a
significant role in the observed variations in the optical emission line ratios
from extraplanar DIG.Comment: accepted for publication in ApJ, 43 pages including 26 figure
Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling
The inelastic portion of the tunnel current through an individual magnetic
atom grants unique access to read out and change the atom's spin state, but it
also provides a path for spontaneous relaxation and decoherence. Controlled
closure of the inelastic channel would allow for the latter to be switched off
at will, paving the way to coherent spin manipulation in single atoms. Here we
demonstrate complete closure of the inelastic channels for both spin and
orbital transitions due to a controlled geometric modification of the atom's
environment, using scanning tunnelling microscopy (STM). The observed
suppression of the excitation signal, which occurs for Co atoms assembled into
chain on a CuN substrate, indicates a structural transition affecting the
d orbital, effectively cutting off the STM tip from the spin-flip
cotunnelling path.Comment: 4 figures plus 4 supplementary figure
Boundedness properties of fermionic operators
The fermionic second quantization operator is shown to be
bounded by a power of the number operator given that the operator
belongs to the -th von Neumann-Schatten class, . Conversely,
number operator estimates for imply von Neumann-Schatten
conditions on . Quadratic creation and annihilation operators are treated as
well.Comment: 15 page
Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies
Spatial variations of the [S II]/H-Alpha and [N II]/H-Alpha line intensity
ratios observed in the gaseous halo of the Milky Way and other galaxies are
inconsistent with pure photoionization models. They appear to require a
supplemental heating mechanism that increases the electron temperature at low
densities n_e. This would imply that in addition to photoionization, which has
a heating rate per unit volume proportional to n_e^2, there is another source
of heat with a rate per unit volume proportional to a lower power of n_e. One
possible mechanism is the dissipation of interstellar plasma turbulence, which
according to Minter & Spangler (1997) heats the ionized interstellar medium in
the Milky Way at a rate ~ 1x10^-25 n_e ergs cm^-3 s^-1. If such a source were
present, it would dominate over photoionization heating in regions where n_e <
0.1 cm^-3, producing the observed increases in the [S II]/H-Alpha and [N
II]/H-Alpha intensity ratios at large distances from the galactic midplane, as
well as accounting for the constancy of [S II]/[N II], which is not explained
by pure photoionization. Other supplemental heating sources, such as magnetic
reconnection, cosmic rays, or photoelectric emission from small grains, could
also account for these observations, provided they supply to the warm ionized
medium ~ 10^-5 ergs s^-1 per cm^2 of Galactic disk.Comment: 10 pages, 1 figur
WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium
A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35
deg), which samples regions of the Local (Orion) spiral arm and the more
distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM)
in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in
emission-line investigations of diffuse gas in other galaxies are confirmed in
the Milky Way and extended to much fainter emission. We find that the [S
II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities
decrease. For the more distant Perseus arm emission, the increase in these
ratios is a strong function of Galactic latitude and thus, of height above the
Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha
intensity. Scatter in this ratio appears to be physically significant, and maps
of it suggest regions with similar ratios are spatially correlated. The Perseus
arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%.
With [S II]/[N II] fairly constant over a large range of H-Alpha intensities,
the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an
increase in temperature. Such an interpretation allows us to estimate the
temperature and ionization conditions in our large sample of observations. We
find that WIM temperatures range from 6,000 K to 9,000 K with temperature
increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha
and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect
changes in the local ionization conditions (e.g. the S+/S++ ratio). We also
measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc,
confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided
here, original PS figures at link below. Accepted for publication in ApJ.
More information about the WHAM project can be found at
http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now
contains the proper points. No other changes have been mad
The Warm Ionized Medium in the Milky Way and Other Galaxies
Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse
Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in
several other galaxies show strong [NII]6563 (~H-alpha in some cases) and
[SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios
(e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models
reproduce the observed spectra, providing extra heating beyond that supplied by
photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed
gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg
are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local
gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where
gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the
Perseus arm, there are similar results, with a domposition consistent with the
Galactic abundance gradient. The requirements for NGC 891 are similar to the
Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In
NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come
about if most of the ionizing radiation is supplied by stars with T~50000 K.
Either their radiation must propagate from the plane to high |z| through very
little intervening matter, or else the stars are located at high |z|. The total
power requirement of the extra heating is <15% of the photoionization power.
[O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but
[S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap
Diffuse Ionized Gas in the Dwarf Irregular Galaxy DDO 53
The spectral characteristics throughout the dwarf irregular galaxy DDO 53 are
studied. The results are very similar to those for other irregular galaxies:
high excitation and low values of the [SII]/Halpha ratio. The most likely
ionization source is photon leakage from the classical HII regions, without any
other source, although the interstellar medium of the galaxy is quite
perturbed. Moreover, the physical conditions throughout the galaxy do not
change very much because both the photon leakage percentage and the ionization
temperature are very similar. In addition, the determined metal content for two
HII regions indicates that DDO 53 is a low-metallicity galaxy.Comment: 32 pages, 9 figures, 7 tables. AJ, in pres
- …