31,575 research outputs found

    Directly estimating non-classicality

    Full text link
    We establish a method of directly measuring and estimating non-classicality - operationally defined in terms of the distinguishability of a given state from one with a positive Wigner function. It allows to certify non-classicality, based on possibly much fewer measurement settings than necessary for obtaining complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that even from measuring two conjugate variables alone, one may infer the non-classicality of quantum mechanical modes. This method also provides a practical tool to eventually certify such features in mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner's theorem characterizing classical and quantum characteristic functions and on semi-definite programming. In this joint theoretical-experimental work we present data from experimental optical Fock state preparation, demonstrating the functioning of the approach.Comment: 4+1 pages, 2 figures, minor change

    Intermediate quantum maps for quantum computation

    Full text link
    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production, and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically, and yields pseudorandom operators with original properties, enabling for example to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.Comment: 4 pages, 4 figures, research done at http://www.quantware.ups-tlse.fr

    Transonic Elastic Model for Wiggly Goto-Nambu String

    Full text link
    The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic string can be effectively represented by an elastic string model of exactly transonic type (with energy density UU inversely proportional to its tension TT) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure

    Calculation of the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    Get PDF
    A theoretical investigation was carried out to extend and improve an existing method for predicting the longitudinal characteristics of wing flap configurations with externally blown flaps (EBF). Two potential flow models were incorporated into the prediction method: a wing and flap lifting-surface model and a turbofan engine wake model. The wing-flap model uses a vortex-lattice approach to represent the wing and flaps. The jet wake model consists of a series of closely spaced vortex rings normal to a centerline which may have vertical and lateral curvature to conform to the local flow field beneath the wing and flaps. Comparisons of measured and predicted pressure distributions, span load distributions on each lifting surface, and total lift and pitching moment coefficients on swept and unswept EBF configurations are included. A wide range of thrust coefficients and flap deflection angles is considered at angles of attack up to the onset of stall. Results indicate that overall lift and pitching-moment coefficients are predicted reasonably well over the entire range. The predicted detailed load distributions are qualitatively correct and show the peaked loads at the jet impingement points, but the widths and heights of the load peaks are not consistently predicted

    Entanglement trapping in a non-stationary structured reservoir

    Get PDF
    We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime. Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure

    Continuous non-perturbative regularization of QED

    Full text link
    We regularize in a continuous manner the path integral of QED by construction of a non-local version of its action by means of a regularized form of Dirac's δ\delta functions. Since the action and the measure are both invariant under the gauge group, this regularization scheme is intrinsically non-perturbative. Despite the fact that the non-local action converges formally to the local one as the cutoff goes to infinity, the regularized theory keeps trace of the non-locality through the appearance of a quadratic divergence in the transverse part of the polarization operator. This term which is uniquely defined by the choice of the cutoff functions can be removed by a redefinition of the regularized action. We notice that as for chiral fermions on the lattice, there is an obstruction to construct a continuous and non ambiguous regularization in four dimensions. With the help of the regularized equations of motion, we calculate the one particle irreducible functions which are known to be divergent by naive power counting at the one loop order.Comment: 23 pages, LaTeX, 5 Encapsulated Postscript figures. Improved and revised version, to appear in Phys. Rev.

    Geochemical comparison of K-T boundaries from the Northern and Southern Hemispheres

    Get PDF
    Closely spaced (cm-scale) traverses through the K-T boundary at Stevns Klint (Denmark), Woodside Creek (New Zealand) and a new Southern Hemisphere site at Richards Bay (South Africa) were subjected to trace element and isotopic (C, O, Sr) investigation. Intercomparison between these data-sets, and correlation with the broad K-T database available in the literature, indicate that the chemistry of the boundary clays is not globally constant. Variations are more common than similarities, both of absolute concentrations, and interelement ratios. For example, the chondrite normalized platinum-group elements (PGE) patterns of Stevns Klint are not like those of Woodside Creek, with the Pt/Os ratios showing the biggest variation. These differences in PGE patterns are difficult to explain by secondary alteration of a layer that was originally chemically homogeneous, especially for elements of such dubious crustal mobility as Os and Ir. The data also show that enhanced PGE concentrations, with similar trends to those of the boundary layers, occur in the Cretaceous sediments below the actual boundary at Stevns Klint and all three the New Zealand localities. This confirms the observations of others that the geochemistry of the boundary layers apparently does not record a unique component. It is suggested that terrestrial processes, eg. an extended period of Late Cretaceous volcanism can offer a satisfactory explanation for the features of the K-T geochemical anomaly. Such models would probably be more consistent with the observed stepwise, or gradual, palaeontological changes across this boundary, than the instant catastrophe predicated by the impact theory

    What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?

    Full text link
    The introduction of smart electricity meters with cellular radio interface puts an additional load on the wireless cellular networks. Currently, these meters are designed for low duty cycle billing and occasional system check, which generates a low-rate sporadic traffic. As the number of distributed energy resources increases, the household power will become more variable and thus unpredictable from the viewpoint of the Distribution System Operator (DSO). It is therefore expected, in the near future, to have an increased number of Wide Area Measurement System (WAMS) devices with Phasor Measurement Unit (PMU)-like capabilities in the distribution grid, thus allowing the utilities to monitor the low voltage grid quality while providing information required for tighter grid control. From a communication standpoint, the traffic profile will change drastically towards higher data volumes and higher rates per device. In this paper, we characterize the current traffic generated by smart electricity meters and supplement it with the potential traffic requirements brought by introducing enhanced Smart Meters, i.e., meters with PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular system performance behaves with the current and next generation smart meters traffic, where it is clearly seen that the PMU data will seriously challenge these wireless systems. We conclude by highlighting the possible solutions for upgrading the cellular standards, in order to cope with the upcoming smart metering traffic.Comment: Submitted; change: corrected location of eSM box in Fig. 1; May 22, 2015: Major revision after review; v4: revised, accepted for publicatio
    corecore