1,524 research outputs found

    Multidimensional optical fractionation with holographic verification

    Full text link
    The trajectories of colloidal particles driven through a periodic potential energy landscape can become kinetically locked in to directions dictated by the landscape's symmetries. When the landscape is realized with forces exerted by a structured light field, the path a given particle follows has been predicted to depend exquisitely sensitively on such properties as the particle's size and refractive index These predictions, however, have not been tested experimentally. Here, we describe measurements of colloidal silica spheres' transport through arrays of holographic optical traps that use holographic video microscopy to track individual spheres' motions in three dimensions and simultaneously to measure each sphere's radius and refractive index with part-per-thousand resolution. These measurements confirm previously untested predictions for the threshold of kinetically locked-in transport, and demonstrate the ability of optical fractionation to sort colloidal spheres with part-per-thousand resolution on multiple characteristics simultaneously.Comment: 4 pages, 2 figures. Accepted for publication in Physical Review Letter

    The Importance of Broad Emission-Line Widths in Single Epoch Black Hole Mass Estimates

    Full text link
    Estimates of the mass of super-massive black holes (BHs) in distant active galactic nuclei (AGNs) can be obtained efficiently only through single-epoch spectra, using a combination of their broad emission-line widths and continuum luminosities. Yet the reliability and accuracy of the method, and the resulting mass estimates, M_BH, remain uncertain. A recent study by Croom using a sample of SDSS, 2QZ and 2SLAQ quasars suggests that line widths contribute little information about the BH mass in these single-epoch estimates and can be replaced by a constant value without significant loss of accuracy. In this Letter, we use a sample of nearby reverberation-mapped AGNs to show that this conclusion is not universally applicable. We use the bulge luminosity (L_Bulge) of these local objects to test how well the known M_BH - L_Bulge correlation is recovered when using randomly assigned line widths instead of the measured ones to estimate M_BH. We find that line widths provide significant information about M_BH, and that for this sample, the line width information is just as significant as that provided by the continuum luminosities. We discuss the effects of observational biases upon the analysis of Croom and suggest that the results can probably be explained as a bias of flux-limited, shallow quasar samples.Comment: 10 text pages + 4 Figures + 1 Table. Accepted for publication in ApJ Letter

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    Weak Long-Ranged Casimir Attraction in Colloidal Crystals

    Full text link
    We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions' distribution provide a mechanism for the macroions to attract each other at large separations. Although this Casimir interaction is long-ranged, it is too weak to influence colloidal crystals' dynamics.Comment: 5 pages 2 figures ReVTe

    Bright Source of Cold Ions for Surface-Electrode Traps

    Get PDF
    We produce large numbers of low-energy ions by photoionization of laser-cooled atoms inside a surface-electrode-based Paul trap. The isotope-selective trap loading rate of 4×1054\times10^{5} Yb+^{+} ions/s exceeds that attained by photoionization (electron impact ionization) of an atomic beam by four (six) orders of magnitude. Traps as shallow as 0.13 eV are easily loaded with this technique. The ions are confined in the same spatial region as the laser-cooled atoms, which will allow the experimental investigation of interactions between cold ions and cold atoms or Bose-Einstein condensates.Comment: Paper submitted to PRL for review on 2/1/0

    Anomalous interactions in confined charge-stabilized colloid

    Full text link
    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism.Comment: 8 pages, 5 figures, RevTeX4. Conference proceedings for CODEF-04, Colloidal Dispersions in External Fields, March 29 - April 1, 200

    Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    Full text link
    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r^2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening present in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation.Comment: 13 page

    Variability of Low-ionization Broad Absorption Line Quasars Based on Multi-epoch Spectra from The Sloan Digital Sky Survey

    Get PDF
    We present absorption variability results for 134 bona fide \mgii\ broad absorption line (BAL) quasars at 0.46~≲z≲\lesssim z \lesssim~2.3 covering days to ∼\sim 10 yr in the rest frame. We use multiple-epoch spectra from the Sloan Digital Sky Survey, which has delivered the largest such BAL-variability sample ever studied. \mgii-BAL identifications and related measurements are compiled and presented in a catalog. We find a remarkable time-dependent asymmetry in EW variation from the sample, such that weakening troughs outnumber strengthening troughs, the first report of such a phenomenon in BAL variability. Our investigations of the sample further reveal that (i) the frequency of BAL variability is significantly lower (typically by a factor of 2) than that from high-ionization BALQSO samples; (ii) \mgii\ BAL absorbers tend to have relatively high optical depths and small covering factors along our line of sight; (iii) there is no significant EW-variability correlation between \mgii\ troughs at different velocities in the same quasar; and (iv) the EW-variability correlation between \mgii\ and \aliii\ BALs is significantly stronger than that between \mgii\ and \civ\ BALs at the same velocities. These observational results can be explained by a combined transverse-motion/ionization-change scenario, where transverse motions likely dominate the strengthening BALs while ionization changes and/or other mechanisms dominate the weakening BALs.Comment: 24 pages, accepted for publication in ApJ
    • …
    corecore