25,318 research outputs found

    Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism

    Get PDF
    Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C-terminal residues of vasoactive peptides including apelin-13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co-immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α-subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease. © 2014 The Authors

    Fiber Based Multiple-Access Optical Frequency Dissemination

    Full text link
    We demonstrate a fiber based multiple-access optical frequency dissemination scheme. Without using any additional laser sources, we reproduce the stable disseminated frequency at an arbitrary point of fiber link. Relative frequency stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber network for highly-precision synchronization of optical frequency is made possible by this method and its applications are discussed.Comment: 5 pages, 3 figure

    Collisional Transfer of Population and Orientation in NaK

    Get PDF
    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A1Σ +(v 0=16, J 0 ) ← X1Σ +(v 00=0, J 0 ± 1) transition, creating an orientation (non-uniform MJ0 level distribution) in both levels. The linearly polarized probe laser is scanned over various 31Π(v, J 0±1) ← A1Σ +(v 0=16, J 0 ) transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system

    Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix

    Full text link
    The reinforcement efficiency of carbon nanotubes (CNTs) in epoxy matrix was investigated in the elastic regime. Cyclic uniaxial tensile tests were performed at constant strain amplitude and increasing maximum strain. Post-curing of the epoxy and its composite at a temperature close to the glass transition temperature allowed us to explore the effect of aging on the reinforcement efficiency of CNT. It is found that the reinforcement efficiency is compatible with a mean field mixture rule of stress reinforcement by random inclusions. It also diminishes when the maximum strain increased and this effect is amplified by aging. The decrease of elastic modulus with increasing cyclic maximum strain is quite similar to the one observed for filled elastomers with increasing strain amplitude, a phenomenon often referred as the Payne effect

    Polarization Spectroscopy and Collisions in NaK

    Get PDF
    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A1Σ +(v=16, J) ← X1Σ +(v=0, J ± 1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3 1Π(v=8, J 0 ± 1) ← A1Σ +(v=16, J 0 ) transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J 0 = J), we also observe weak collisional satellite lines (J 0 = J ±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms
    corecore