1,911 research outputs found

    Observation of strong surface state effects in the nonlinear magneto-optical response of Ni(110)

    Get PDF
    Spectroscopic magnetization induced optical Second Harmonic Generation (MSHG) measurements from a clean Ni(110) surface reveal strong resonance effects near 2.7 eV that can be attributed to the presence of an empty surface state. The good agreement with model calculations shows the potential of MSHG to probe spin polarized interface band structures.Comment: REVTeX/EPS figures/Authors's single Postsript file, to appear in PRL, our new phase-sensitive detection technique is used (see PRB, 58, R16020 (1998)), for more details see http://www.sci.kun.nl/tvs/people/petukhov

    Attentional avoidance of high-fat food in unsuccessful dieters

    Get PDF
    Using the exogenous cueing task, this study examined whether restrained and disinhibited eaters differ in their orientation of attention towards and their difficulty to disengage from high versus low-fat food pictures in a relatively short (500 ms) and a long presentation format (1500 ms). Overall, participants in the 500 ms condition showed a tendency to direct attention away from high-fat food pictures compared to neutral pictures. No differential pattern was evident for the 1500 ms condition. Correlational analysis revealed that reduced engagement with high-fat food was particularly pronounced for disinhibited eaters. Although in the short term this seems an adaptive strategy, it may eventually become counterproductive, as it could hinder habituation and learning to cope with seductive characteristics of high-fat food. (C) 2010 Elsevier Ltd. All rights reserved

    A spectral function tour of electron-phonon coupling outside the Migdal limit

    Full text link
    We simulate spectral functions for electron-phonon coupling in a filled band system - far from the asymptotic limit often assumed where the phonon energy is very small compared to the Fermi energy in a parabolic band and the Migdal theorem predicting 1+lambda quasiparticle renormalizations is valid. These spectral functions are examined over a wide range of parameter space through techniques often used in angle-resolved photoemission spectroscopy (ARPES). Analyzing over 1200 simulations we consider variations of the microscopic coupling strength, phonon energy and dimensionality for two models: a momentum-independent Holstein model, and momentum-dependent coupling to a breathing mode phonon. In this limit we find that any `effective coupling', lambda_eff, inferred from the quasiparticle renormalizations differs from the microscopic dimensionless coupling characterizing these Hamiltonians, lambda, and could drastically either over- or under-estimate it depending on the particular parameters and model. In contrast, we show that perturbation theory retains good predictive power for low coupling and small momenta, and that the momentum-dependence of the self-energy can be revealed via the relationship between velocity renormalization and quasiparticle strength. Additionally we find that (although not strictly valid) it is often possible to infer the self-energy and bare electronic structure through a self-consistent Kramers-Kronig bare-band fitting; and also that through lineshape alone, when Lorentzian, it is possible to reliably extract the shape of the imaginary part of a momentum-dependent self-energy without reference to the bare-band.Comment: 15 pages, 11 figures. High resolution available here: http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/sf_tour.pd

    Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory

    Full text link
    In search of the potential realization of novel normal-state phases on the surface of Sr2RuO4 - those stemming from either topological bulk properties or the interplay between spin-orbit coupling (SO) and the broken symmetry of the surface - we revisit the electronic structure of the top-most layers by ARPES with improved data quality as well as ab-initio LDA slab calculations. We find that the current model of a single surface layer (\surd2x\surd2)R45{\deg} reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with LDA+SO slab calculations based on the LEED-determined surface crystal structure, reveal that (at a minimum) the sub-surface layer also undergoes a similar although weaker reconstruction. This points to a surface-to-bulk progression of the electronic states driven by structural instabilities, with no evidence for Dirac and Rashba-type states or surface magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    Rashba spin-splitting control at the surface of the topological insulator Bi2Se3

    Full text link
    The electronic structure of Bi2Se3 is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultra-high-vacuum conditions, can be overcome via in-situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab-initio slab calculations reveal that these Rashba state are derived from the 5QL quantum-well states. While the K-induced potential gradient enhances the spin splitting, this might be already present for pristine surfaces due to the symmetry breaking of the vacuum-solid interface.Comment: A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_K.pd

    Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap

    Full text link
    We study Na2IrO3 by ARPES, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g manifold highlights the importance of structural distortions and spin-orbit coupling (SO) in driving the system closer to a Mott transition. We detect an insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    A Green Hydrogen Energy System:Optimal control strategies for integrated hydrogen storage and power generation with wind energy

    Get PDF
    The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end, hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry, heating for built environment, and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory, we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen, or buy from or sell to the electricity market, and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings, such as contractually binding power purchase agreements, varying electricity prices, different distribution channels, green hydrogen offtake agreements, and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe’s first Hydrogen Valley is being formed. Results show that gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a €126,000 increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover, our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track
    corecore