9,351 research outputs found
Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection
The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode
Barkhausen noise in the Random Field Ising Magnet NdFeB
With sintered needles aligned and a magnetic field applied transverse to its
easy axis, the rare-earth ferromagnet NdFeB becomes a
room-temperature realization of the Random Field Ising Model. The transverse
field tunes the pinning potential of the magnetic domains in a continuous
fashion. We study the magnetic domain reversal and avalanche dynamics between
liquid helium and room temperatures at a series of transverse fields using a
Barkhausen noise technique. The avalanche size and energy distributions follow
power-law behavior with a cutoff dependent on the pinning strength dialed in by
the transverse field, consistent with theoretical predictions for Barkhausen
avalanches in disordered materials. A scaling analysis reveals two regimes of
behavior: one at low temperature and high transverse field, where the dynamics
are governed by the randomness, and the second at high temperature and low
transverse field where thermal fluctuations dominate the dynamics.Comment: 16 pages, 7 figures. Under review at Phys. Rev.
Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory
This paper has a dual purpose. One aim is to study the evolution of coherent
states in ordinary quantum mechanics. This is done by means of a Hamiltonian
approach to the evolution of the parameters that define the state. The
stability of the solutions is studied. The second aim is to apply these
techniques to the study of the stability of minisuperspace solutions in field
theory. For a theory we show, both by means of perturbation
theory and rigorously by means of theorems of the K.A.M. type, that the
homogeneous minisuperspace sector is indeed stable for positive values of the
parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure
Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition
We use synchrotron x-ray diffraction and electrical transport under pressure
to probe both the magnetism and the structure of single crystal NiS2 across its
Mott-Hubbard transition. In the insulator, the low-temperature
antiferromagnetic order results from superexchange among correlated electrons
and couples to a (1/2, 1/2, 1/2) superlattice distortion. Applying pressure
suppresses the insulating state, but enhances the magnetism as the
superexchange increases with decreasing lattice constant. By comparing our
results under pressure to previous studies of doped crystals we show that this
dependence of the magnetism on the lattice constant is consistent for both band
broadening and band filling. In the high pressure metallic phase the lattice
symmetry is reduced from cubic to monoclinic, pointing to the primary influence
of charge correlations at the transition. There exists a wide regime of phase
separation that may be a general characteristic of correlated quantum matter.Comment: 5 pages, 3 figure
Recommended from our members
Emotion processing in infancy: specificity in risk for social anxiety and associations with two year outcomes
The current study examined the specificity of patterns of responding to high and low intensity negative emotional expressions of infants of mothers with social phobia, and their association with child outcomes at two years of age. Infants of mothers with social phobia, generalised anxiety disorder (GAD) or no history of anxiety were shown pairs of angry and fearful emotional expressions at 10 weeks of age. Symptoms of social withdrawal, anxiety and sleep problems were assessed at two years of age. Only infants of mothers with social phobia showed a tendency to look away from high intensity fear faces; however infants of mothers with both social phobia and GAD showed a bias towards high intensity angry faces. Among the offspring of mothers with social phobia, anxiety symptoms at two years of age were associated with a preference for high intensity fear faces in infancy. The reverse pattern was found amongst the offspring of non-anxious mothers. These findings suggest a possible specific response to emotional expressions among the children of mothers with social phobia
Inference with interference between units in an fMRI experiment of motor inhibition
An experimental unit is an opportunity to randomly apply or withhold a
treatment. There is interference between units if the application of the
treatment to one unit may also affect other units. In cognitive neuroscience, a
common form of experiment presents a sequence of stimuli or requests for
cognitive activity at random to each experimental subject and measures
biological aspects of brain activity that follow these requests. Each subject
is then many experimental units, and interference between units within an
experimental subject is likely, in part because the stimuli follow one another
quickly and in part because human subjects learn or become experienced or
primed or bored as the experiment proceeds. We use a recent fMRI experiment
concerned with the inhibition of motor activity to illustrate and further
develop recently proposed methodology for inference in the presence of
interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at
http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package
cin (Causal Inference for Neuroscience) implementing the proposed method is
freely available on CRAN at https://CRAN.R-project.org/package=ci
Strongly-coupled quantum critical point in an all-in-all-out antiferromagnet
Dimensionality and symmetry play deterministic roles in the laws of Nature.
They are important tools to characterize and understand quantum phase
transitions, especially in the limit of strong correlations between spin,
orbit, charge, and structural degrees of freedom. Using newly-developed,
high-pressure resonant x-ray magnetic and charge diffraction techniques, we
have discovered a quantum critical point in Cd2Os2O7 as the all-in-all-out
(AIAO) antiferromagnetic order is continuously suppressed to zero temperature
and, concomitantly, the cubic lattice structure continuously changes from space
group Fd-3m to F-43m. Surrounded by three phases of different time reversal and
spatial inversion symmetries, the quantum critical region anchors two phase
lines of opposite curvature, with striking departures from a mean-field form at
high pressure. As spin fluctuations, lattice breathing modes, and quasiparticle
excitations interact in the quantum critical region, we argue that they present
the necessary components for strongly-coupled quantum criticality in this
three-dimensional compound
- …