3,475 research outputs found

    Entanglement and symmetry in permutation symmetric states

    Full text link
    We investigate the relationship between multipartite entanglement and symmetry, focusing on permutation symmetric states. We use the Majorana representation, where these states correspond to points on a sphere. Symmetry of the representation under rotation is equivalent to symmetry of the states under products of local unitaries. The geometric measure of entanglement is thus phrased entirely as a geometric optimisation, and a condition for the equivalence of entanglement measures written in terms of point symmetries. Finally we see that different symmetries of the states correspond to different types of entanglement with respect to SLOCC interconvertibility.Comment: 4 pages, 2 figures. Preliminary versions of some of these results were presented in the QIT 16 workshop in Japan, D. Markham, Proceedings of QIT 16, Japan (2007). Updated to reflect changes for publication: expanded proofs and some new examples give

    Experimental demonstration of a graph state quantum error-correction code

    Full text link
    Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. In this article we report an experimental demonstration of error correction using a graph state code. We have used an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we have realized is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing

    FootSLAM meets adaptive thresholding

    Get PDF
    The is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCalibration of the zero-velocity detection threshold is an essential prerequisite for zero-velocity-aided inertial navigation. However, the literature is lacking a self-contained calibration method, suitable for large-scale use in unprepared environments without map information or pre-deployed infrastructure. In this paper, the calibration of the zero-velocity detection threshold is formulated as a maximum likelihood problem. The likelihood function is approximated using estimation quantities readily available from the FootSLAM algorithm. Thus, we obtain a method for adaptive thresholding that does not require map information, measurements from supplementary sensors, or user input. Experimental evaluations are conducted using data with different gait speeds, sensor placements, and walking trajectories. The proposed calibration method is shown to outperform fixed-threshold zero-velocity detectors and a benchmark using a speed-based threshold classifier.National Institute of Standards and Technology (NIST

    Incorporating spatial correlations into multispecies mean-field models

    Get PDF
    In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques

    An investigation of TNAV equipped aircraft in a simulated en route metering environment

    Get PDF
    This document presents the results of an effort to estimate how often a TNAV (Time Navigation) equipped aircraft could be given a TNAV clearance in the En Route Metering (ERM) system as a function of the percentage of arriving traffic which is TNAV equipped. A fast-time simulation of Denver Stapleton international arrival traffic in the Denver Air Route Traffic Control Center route structure, including en route metering operations, was used to develop data on estimated conflicts, clearance communications and fuel usage for traffic mixes of 25, 50, 75 and 100% TNAV equipped. This study supports an overall effort by NASA to assess the benefits and required technology for using TNAV-equipped aircraft in the ERM environment

    Survival of entanglement in thermal states

    Full text link
    We present a general sufficiency condition for the presence of multipartite entanglement in thermal states stemming from the ground state entanglement. The condition is written in terms of the ground state entanglement and the partition function and it gives transition temperatures below which entanglement is guaranteed to survive. It is flexible and can be easily adapted to consider entanglement for different splittings, as well as be weakened to allow easier calculations by approximations. Examples where the condition is calculated are given. These examples allow us to characterize a minimum gapping behavior for the survival of entanglement in the thermodynamic limit. Further, the same technique can be used to find noise thresholds in the generation of useful resource states for one-way quantum computing.Comment: 6 pages, 2 figures. Changes made in line with publication recommendations. Motivation and concequences of result clarified, with the addition of one more example, which applies the result to give noise thresholds for measurement based quantum computing. New author added with new result

    One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment

    Full text link
    Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. We first use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times

    Quantum interference of single photons from remote nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g(2)(0)=0.35±0.04<0.5g^{(2)}(0) = 0.35 \pm 0.04<0.5. In addition, optical transition frequencies of two separated NV centers are tuned into resonance with each other by applying external electric fields. Extension of the present approach to generate entanglement of remote solid-state qubits is discussed.Comment: 5 pages, 3 figure
    corecore