5,688 research outputs found

    Manipulating biphotonic qutrits

    Get PDF
    Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.Comment: 4 pages, 4 figure

    Demonstration of a simple entangling optical gate and its use in Bell-state analysis

    Get PDF
    We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realisations, using partially-polarising beamsplitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-Z gate in both continuous-wave and pulsed regimes of operation, fully characterising it in each case using quantum process tomography. We also demonstrate a fully-resolving, nondeterministic optical Bell-state analyser based on this controlled-Z gate. This new architecture is ideally suited to guided optics implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures (low res), some other minor changes. Accepted for publication in PR

    Quantum process tomography of a controlled-NOT gate

    Get PDF
    We demonstrate complete characterization of a two-qubit entangling process - a linear optics controlled-NOT gate operating with coincident detection - by quantum process tomography. We use maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows accurate prediction of the operation of the gate for arbitrary input states, and calculation of gate performance measures such as the average gate fidelity, average purity and entangling capability of our gate, which are 0.90, 0.83 and 0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved gate operation. Figure quality slightly reduced for arXi

    Volume-preserving normal forms of Hopf-zero singularity

    Full text link
    A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a non-zero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any non-degenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified R\"{o}ssler and generalized Kuramoto--Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple

    The Columbia River Dispute

    Get PDF

    Building Digital Identities: The Challenges, Risks and Opportunities of Collecting Behavioural Attributes for new Digital Identity Systems.

    Get PDF
    The provision of legal identity for all is increasingly viewed as a key mechanism for driving development goals. Behavioural attributes produced through digital interactions may have significant potential for enabling access to a legal identity for all, however the social, legal, and technical affordances and implications remain under-explored.University of Exeter and CoelitionEconomic and Social Research Council (ESRC

    Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beam PLD

    Get PDF
    A series of Co_xCu_{100-x} (x = 0, 40...75, 100) layers with thicknesses in-between 13 nm and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle X-ray diffraction (WAXRD), transmission electron microscopy (TEM) and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction (ED) indicates the presence of an intermetallic Co-Cu phase of Cu3Au structure-type. Thermal treatment at temperatures between 525 K and 750 K results in the progressive decomposition of Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the X-ray diffraction patterns, by taking into account coherent and non-coherent scattering. The alloy films show a giant magnetoresistance of 1...2.3 % with the maximum obtained after annealing at around 725 K.Comment: 9 pages, 9 figure

    Experimental demonstration of Shor's algorithm with quantum entanglement

    Get PDF
    Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shor's algorithm in a photonic system using single photons and employing the non-linearity induced by measurement. For the first time we demonstrate the core processes, coherent control, and resultant entangled states that are required in a full-scale implementation of Shor's algorithm. Demonstration of these processes is a necessary step on the path towards a full implementation of Shor's algorithm and scalable quantum computing. Our results highlight that the performance of a quantum algorithm is not the same as performance of the underlying quantum circuit, and stress the importance of developing techniques for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia
    • …
    corecore