1,577 research outputs found

    Proposal for teleportation of the wave function of a massive particle

    Get PDF
    We propose a scheme for teleporting an atomic center-of-mass wave function between distant locations. The scheme uses interactions in cavity quantum electrodynamics to facilitate a coupling between the motion of an atom trapped inside a cavity and external propagating light fields. This enables the distribution of quantum entanglement and the realization of the required motional Bell-state analysis.Comment: 4 pages, 3 figure

    Observation of the Vacuum-Rabi Spectrum for One Trapped Atom

    Get PDF
    The transmission spectrum for one atom strongly coupled to the field of a high-finesse optical resonator is observed to exhibit a clearly resolved vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure

    Cavity QED "By The Numbers"

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from N >= 3 to N = 2 to 1 to 0, with some trapping events lasting over 1 second.Comment: 5 pages, 4 figure

    Heralded multiphoton states with coherent spin interactions in waveguide QED

    Get PDF
    WaveguideQEDoffers the possibility of generating strong coherent atomic interactions either through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this work, we show how to harness these interactions in order to herald the generation of highly entangled atomic states, which afterwards can be mapped to generate single mode multi-photonic states with high fidelities.Weintroduce two protocols for the preparation of the atomic states, we discuss their performance and compare them to previous proposals. In particular, we show that one of them reaches high probability of success for systems with many atoms but low Purcell factors

    Nonlinear spectroscopy in the strong-coupling regime of cavity QED

    Get PDF
    A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is varied from N̅≈4.2 to N̅≈0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for N̅≳2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and the experiments is observed for small numbers of atoms (N̅≲1). Unfortunately, it is difficult to determine if this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the severe technical complications of the experiment

    Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions

    Get PDF
    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in one- and two-dimensional lattices. In our scheme, two internal atomic states represent a pseudo-spin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce non-trivial Berry phases in the spin lattice, thus opening new avenues for realizing novel topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well known spin models.Comment: 18 pages, 10 figure

    Reply to the Comment on `Deterministic Single-Photon Source for Distributed Quantum Networking'

    Get PDF
    Reply to the comment of H. J. Kimble [quant-ph/0210032] on the experiment realizing a "deterministic single-photon source for distributed quantum networking" by Kuhn, Hennrich, and Rempe [Phys. Rev. Lett. 89, 067901 (2002), quant-ph/0204147].Comment: 1 page 1 figur

    Quantum state transfer between motion and light

    Get PDF
    We describe schemes for transferring quantum states between light fields and the motion of a trapped atom. Coupling between the motion and the light is achieved via Raman transitions driven by a laser field and the quantized field of a high-finesse microscopic cavity mode. By cascading two such systems and tailoring laser field pulses, we show that it is possible to transfer an arbitrary motional state of one atom to a second atom at a spatially distant site.Comment: 10 pages, RevTex, 6 figures, to appear in Journal of Optics B: Quantum and Semiclassical Optic

    Deterministic generation of arbitrary photonic states assisted by dissipation

    Get PDF
    A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.Comment: 15 pages, 4 figure

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
    • …
    corecore