345 research outputs found

    Maternal diabetes causes developmental delay and death in early-somite mouse embryos

    Get PDF
    Maternal diabetes causes congenital malformations and delays embryonic growth in the offspring. We investigated effects of maternal diabetes on mouse embryos during gastrulation and early organogenesis (ED7.5-11.5). Female mice were made diabetic with streptozotocin, treated with controlled-release insulin implants, and mated. Maternal blood glucose concentrations increased up to embryonic day (ED) 8.5. Maternal hyperglycemia induced severe growth retardation (approx.1 day) in 53% of the embryos on ED8.5, death in most of these embryos on ED9.5, and the termination of pregnancy on ED10.5 in litters with >20% dead embryos. Due to this selection, developmental delays and reduction in litter size were no longer observed thereafter in diabetic pregnancies. Male and female embryos were equally sensitive. High-throughput mRNA sequencing and pathway analysis of differentially expressed genes showed that retarded embryos failed to mount the adaptive suppression of gene expression that characterized non-retarded embryos (cell proliferation, cytoskeletal remodeling, oxidative phosphorylation). We conclude that failure of perigastrulation embryos of diabetic mothers to grow and survive is associated with their failure to shut down pathways that are strongly down-regulated in otherwise similar non-retarded embryos. Embryos that survive the early and generalized adverse effect of maternal diabetes, therefore, appear the subset in which malformations become manifest

    Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus

    Get PDF
    12 pages, 5 figures.-- PMID: 19243585 [PubMed].-- PMCID: PMC2656471.-- Supporting information (Microsatellite genotypes of individual tick crosses, XLS file) available at: http://www.biomedcentral.com/content/supplementary/1471-2148-9-46-s1.xls.-- et al.[Background]: The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America.[Results]: The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains.[Conclusion]: The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.This work was supported by ICTTD-3, financed by the International Cooperation Program of the European Union, coordination action project No. 510561, the Consejería de Educación y Ciencia, JCCM, Spain (project PAI06-0046-5285) (to JF), the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (to MBL), the Consejo Nacional de Investigaciones Cientícas y Técnicas de Argentina (PIP 2058) and INTA Rafaela (TCP 426100) (to AJM, AAG and CT). V. Naranjo was funded by Junta de Comunidades de Castilla–La Mancha (JCCM), Spain.Peer reviewe

    Effect of Hyperglycemia on Gene Expression during Early Organogenesis in Mice

    Get PDF
    BACKGROUND: Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but the underlying molecular mechanisms remain unknown. We hypothesized that maternal hyperglycemia would affect the embryos most shortly after the glucose-sensitive time window at embryonic day (ED) 7.5 in mice. METHODS: Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene Expression and deep sequencing. RESULTS: Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5 embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P ≤ E-5). A query of the Mouse Genome Database showed that 20-25% of the differentially expressed genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, implying a shortage of energy production in hyperglycemic embryos. CONCLUSION: Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal remodeling during early organogenesis. 20-25% of the genes that were differentially regulated by hyperglycemia were associated with relevant congenital malformations. Unexpectedly, maternal hyperglycemia also endangered the energy supply of the embryo by suppressing its glycolytic capacity

    TBX2, a Novel Regulator of Labour

    Get PDF
    Background and Objectives: Therapeutic interventions targeting molecular factors involved in the transition from uterine quiescence to overt labour are not substantially reducing the rate of spontaneous preterm labour. The identification of novel rational therapeutic targets are essential to prevent the most common cause of neonatal mortality. Based on our previous work showing that Tbx2 (T-Box transcription factor 2) is a putative upstream regulator preceding progesterone withdrawal in mouse myometrium, we now investigate the role of TBX2 in human myometrium. Materials and Methods: RNA microarray analysis of (A) preterm human myometrium samples and (B) myometrial cells overexpressing TBX2 in vitro, combined with subsequent analysis of the two publicly available datasets of (C) Chan et al. and (D) Sharp et al. The effect of TBX2 overexpression on cytokines/chemokines secreted to the myometrium cell culture medium were determined by Luminex assay. Results: Analysis shows that overexpression of TBX2 in myometrial cells results in downregulation of TNFα- and interferon signalling. This downregulation is consistent with the decreased expression of cytokines and chemokines of which a subset has been previously associated with the inflammatory pathways relevant for human labour. In contrast, CXCL5 (C-X-C motif chemokine ligand 5), CCL21 and IL-6 (Interleukin 6), previously reported in relation to parturition, do not seem to be under TBX2 control. The combined bioinformatical analysis of the four mRNA datasets identifies a subset of upstream regulators common to both preterm and term labour under control of TBX2. Surprisingly, TBX2 mRNA levels are increased in preterm contractile myometrium. Conclusions: We identified a subset of upstream regulators common to both preterm and term labour that are activated in labour and repressed by TBX2. The increased TBX2 mRNA expression in myometrium collected during a preterm caesarean section while in spontaneous preterm labour compared to tissue harvested during iatrogenic preterm delivery does not fit the bioinformatical model. We can only explain this by speculating that the in vivo activity of TBX2 in human myometrium depends not only on the TBX2 expression levels but also on levels of the accessory proteins necessary for TBX2 activity

    Robotic Ultrasound Guidance by B-scan Plane Positioning Control

    Get PDF
    AbstractUltrasound is indispensable imaging modality for clinical diagnosis such as fetus assessment and heart assessment. Moreover, many ultrasound applications for image guided procedures have been proposed and attempted because US is less invasive, less cost, and high portability. However, to obtain US images, a US imaging probe has to be held manually and contacted with a patient body. To address the issue, we have proposed a robotic system for automatic probe scanning. The system consists of a probe scanning robot, navigation software, an optical tracking device, and an ultrasound imaging device. The robot, that is six degrees of freedom, is composed of a frame mechanism and a probe holding mechanism. The frame mechanism has six pneumatic actuators to reduce its weight, and the probe holding mechanism has one DC motor. The probe holding mechanism is connected with the pneumatic actuators using wires. Moreover, the robot can control the position and orientation of the B-scan plane based on the transformation between an optical tracker attached to the US probe and the B-scan plane. The navigation system, which is connected with the tracking device and an US imaging device via a VGA cable, computes the relative position between the positions of a therapeutic tool and the B-scan plane, and sends it to the robot. Then the position of the B-scan plane can be controlled based on the tool position. Also, the navigation system displays the plane with a texture of an actual echogram and a tool model three-dimensionally to monitor the relative position of the tool and the B-scan plane. To validate the basic system performance, phantom tests were conducted. The phantom was made of gelatin and poly(ethylene glycol). In the tests, the needle was inserted into the phantom, and the B-scan plane was controlled to contain a tracked needle in real-time. From the results, the needle was continuously visualized during needle insertion. Therefore, it is confirmed that the system has a great potential for automatic US image guided procedures

    Detection of child abuse in emergency departments: a multi-centre study

    Get PDF
    Objective: This study examines the detection rates of suspected child abuse in the emergency departments of seven Dutch hospitals complying and not complying with screening guidelines for child abuse. Design: Data on demographics, diagnosis and suspected child abuse were collected for all children aged ≤18 years who visited the emergency departments over a 6-month period. The completion of a checklist of warning signs of child abuse in at least 10% of the emergency department visits was considered to be compliance with screening guidelines. Results: A total of 24 472 visits were analysed, 54% of which took place in an emergency department complying with screening guidelines. Child abuse was suspected in 52 children (0.2%). In 40 (77%) of these 52 cases, a checklist of warning signs had been completed compared with a completion rate of 19% in the total sample. In hospitals complying with screening guidelines for child abuse, the detection rate was higher (0.3%) than in those not complying (0.1%, p<0.001). Conclusion: During a 6-month period, emergency department staff suspected child abuse in 0.2% of all children visiting the emergency department of seven Dutch hospitals. The numbers of suspected abuse cases detected were low, but an increase is likely if uniform screening guidelines are widely implemented

    Defining the concept of ‘tick repellency’ in veterinary medicine

    Get PDF
    Although widely used, the term repellency needs to be employed with care when applied to ticks and other periodic or permanent ectoparasites. Repellency has classically been used to describe the effects of a substance that causes a flying arthropod to make oriented movements away from its source. However, for crawling arthropods such as ticks, the term commonly subsumes a range of effects that include arthropod irritation and consequent avoiding or leaving the host, failing to attach, to bite, or to feed. The objective of the present article is to highlight the need for clarity, to propose consensus descriptions and methods for the evaluation of various effects on ticks caused by chemical substances

    Gene silencing in tick cell lines using small interfering or long double-stranded RNA

    Get PDF
    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system

    A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways.

    Get PDF
    Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity
    corecore