7,840 research outputs found
Arrest of Domain Coarsening via Antiperiodic Regimes in Delay Systems
Motionless domains walls representing heteroclinic temporal or spatial orbits
typically exist only for very specific parameters. This report introduces a
novel mechanism for stabilizing temporal domain walls away from the Maxwell
point opening up new possibilities to encode information in dynamical systems.
It is based on anti-periodic regimes in a delayed system close to a bistable
situation, leading to a cancellation of the average drift velocity. The results
are demonstrated in a normal form model and experimentally in a laser with
optical injection and delayed feedback.Comment: 6 pages, 5 figures, resubmitted manuscrip
Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet
The metastable behavior of a kinetic Ising--like ferromagnetic model system
in which a generic type of microscopic disorder induces nonequilibrium steady
states is studied by computer simulation and a mean--field approach. We pay
attention, in particular, to the spinodal curve or intrinsic coercive field
that separates the metastable region from the unstable one. We find that, under
strong nonequilibrium conditions, this exhibits reentrant behavior as a
function of temperature. That is, metastability does not happen in this regime
for both low and high temperatures, but instead emerges for intermediate
temperature, as a consequence of the non-linear interplay between thermal and
nonequilibrium fluctuations. We argue that this behavior, which is in contrast
with equilibrium phenomenology and could occur in actual impure specimens,
might be related to the presence of an effective multiplicative noise in the
system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section
V has been revise
From Gatekeeping to Engagement: A Multicontextual, Mixed Method Study of Student Academic Engagement in Introductory STEM Courses.
The lack of academic engagement in introductory science courses is considered by some to be a primary reason why students switch out of science majors. This study employed a sequential, explanatory mixed methods approach to provide a richer understanding of the relationship between student engagement and introductory science instruction. Quantitative survey data were drawn from 2,873 students within 73 introductory science, technology, engineering, and mathematics (STEM) courses across 15 colleges and universities, and qualitative data were collected from 41 student focus groups at eight of these institutions. The findings indicate that students tended to be more engaged in courses where the instructor consistently signaled an openness to student questions and recognizes her/his role in helping students succeed. Likewise, students who reported feeling comfortable asking questions in class, seeking out tutoring, attending supplemental instruction sessions, and collaborating with other students in the course were also more likely to be engaged. Instructional implications for improving students' levels of academic engagement are discussed
Transforming triangulations on non planar-surfaces
We consider whether any two triangulations of a polygon or a point set on a
non-planar surface with a given metric can be transformed into each other by a
sequence of edge flips. The answer is negative in general with some remarkable
exceptions, such as polygons on the cylinder, and on the flat torus, and
certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM
Journal on Discrete Mathematics. Keywords: Graph of triangulations,
triangulations on surfaces, triangulations of polygons, edge fli
Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems
We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks. © 2012 American Institute of Physics
Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser
We report on the experimental observation of optical bistability (OB) and nonlinear switching (NS) in a nanostructure laser; specifically a 1550 nm quantum dash Fabry-Perot laser subject to external optical injection and operated in reflection. Different shapes of optical bistability and nonlinear switching, anticlockwise and clockwise, with very high on-off contrast ratio (up to 180:1) between output states were experimentally measured. These results added to the potential of nanostructure lasers for enhanced performance offer promise for use in fast all-optical signal processing applications in optical networks. © 2012 American Institute of Physics
Evaluation of the shrinkage and creep of medium strength self compacting concrete
The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the
Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).Peer ReviewedPostprint (published version
Theoretical Characterization of the Interface in a Nonequilibrium Lattice System
The influence of nonequilibrium bulk conditions on the properties of the
interfaces exhibited by a kinetic Ising--like model system with nonequilibrium
steady states is studied. The system is maintained out of equilibrium by
perturbing the familiar spin--flip dynamics at temperature T with
completely--random flips; one may interpret these as ideally simulating some
(dynamic) impurities. We find evidence that, in the present case, the
nonequilibrium mechanism adds to the basic thermal one resulting on a
renormalization of microscopic parameters such as the probability of
interfacial broken bonds. On this assumption, we develop theory for the
nonequilibrium "surface tension", which happens to show a non--monotonous
behavior with a maximum at some finite T. It ensues, in full agreement with
Monte Carlo simulations, that interface fluctuations differ qualitatively from
the equilibrium case, e.g., the interface remains rough at zero--T. We discuss
on some consequences of these facts for nucleation theory, and make some
explicit predictions concerning the nonequilibrium droplet structure.Comment: 10 pages, 7 figures, submitted to Phys. Re
Stability of the nonlinear dynamics of an optically injected VCSEL
Automated protocols have been developed to characterize time series data in terms of stability. These techniques are applied to the output power time series of an optically injected vertical cavity surface emitting laser (VCSEL) subject to varying injection strength and optical frequency detuning between master and slave lasers. Dynamic maps, generated from high resolution, computer controlled experiments, identify regions of dynamic instability in the parameter space. © 2012 Optical Society of America
- …