5,378 research outputs found

    Managing sleep and wakefulness in a 24 hour world

    Get PDF
    This article contributes to literature on the sociology of sleep by exploring the sleeping practices and subjective sleep experiences of two social groups: shift workers and students. It draws on data, collected in the UK from 25 semi-structured interviews, to discuss the complex ways in which working patterns and social activities impact upon experiences and expectations of sleep in our wired awake world. The data show that, typically, sleep is valued and considered to be important for health, general wellbeing, appearance and physical and cognitive functioning. However, sleep time is often cut back on in favour of work demands and social activities. While shift workers described their efforts to fit in an adequate amount of sleep per 24-hour period, for students, the adoption of a flexible sleep routine was thought to be favourable for maintaining a work–social life balance. Collectively, respondents reported using a wide range of strategies, techniques, technologies and practices to encourage, overcome or delay sleep(iness) and boost, promote or enhance wakefulness/alertness at socially desirable times. The analysis demonstrates how social context impacts not only on how we come to think about sleep and understand it, but also how we manage or self-regulate our sleeping patterns

    Indium oxide diffusion barriers for Al/Si metallizations

    Get PDF
    Indium oxide (In2O3) films were prepared by reactive rf sputtering of an In target in O2/Ar plasma. We have investigated the application of these films as diffusion barriers in Si/In2O3/Al and Si/TiSi2.3/In2O3/Al metallizations. Scanning transmission electron microscopy together with energy dispersive analysis of x ray of cross-sectional Si/In2O3/Al specimens, and electrical measurements on shallow n + -p junction diodes were used to evaluate the diffusion barrier capability of In2O3 films. We find that 100-nm-thick In2O3 layers prevent the intermixing between Al and Si in Si/In2O3/Al contacts up to 650°C for 30 min, which makes this material one of the best thin-film diffusion barriers on record between Al and Si. (The Si-Al eutectic temperature is 577°C, Al melts at 660°C.) When a contacting layer of titanium silicide is incorporated to form a Si/TiSi2.3/In2O3/Al metallization structure, the thermal stability of the contact drops to 600°C for 30 min heat treatment

    Cavity-Modulated Proton Transfer Reactions

    Get PDF
    Proton transfer is ubiquitous in many fundamental chemical and biological processes, and the ability to modulate and control the proton transfer rate would have a major impact on numerous quantum technological advances. One possibility to modulate the reaction rate of proton transfer processes is given by exploiting the strong light-matter coupling of chemical systems inside optical or nanoplasmonic cavities. In this work, we investigate the proton transfer reactions in the prototype malonaldehyde and Z-3-amino-propenal (aminopropenal) molecules using different quantum electrodynamics methods, in particular, quantum electrodynamics coupled cluster theory and quantum electrodynamical density functional theory. Depending on the cavity mode polarization direction, we show that the optical cavity can increase the reaction energy barrier by 10–20% or decrease the reaction barrier by ∼5%. By using first-principles methods, this work establishes strong light-matter coupling as a viable and practical route to alter and catalyze proton transfer reactions

    Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light–Matter Systems

    Get PDF
    The rapid progress in quantum-optical experiments, especially in the field of cavity quantum electrodynamics and nanoplasmonics, allows one to substantially modify and control chemical and physical properties of atoms, molecules, and solids by strongly coupling to the quantized field. Alongside such experimental advances has been the recent development of ab initio approaches such as quantum electrodynamical density-functional theory (QEDFT), which is capable of describing these strongly coupled systems from first principles. To investigate response properties of relatively large systems coupled to a wide range of photon modes, ab initio methods that scale well with system size become relevant. In light of this, we extend the linear-response Sternheimer approach within the framework of QEDFT to efficiently compute excited-state properties of strongly coupled light–matter systems. Using this method, we capture features of strong light–matter coupling both in the dispersion and absorption properties of a molecular system strongly coupled to the modes of a cavity. We exemplify the efficiency of the Sternheimer approach by coupling the matter system to the continuum of an electromagnetic field. We observe changes in the spectral features of the coupled system as Lorentzian line shapes turn into Fano resonances when the molecule interacts strongly with the continuum of modes. This work provides an alternative approach for computing efficiently excited-state properties of large molecular systems interacting with the quantized electromagnetic field

    Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity

    Get PDF
    Strong light-matter interaction in cavity environments has emerged as a promising and general approach to control chemical reactions in a non-intrusive manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained thus far largely unclear, hampering progress in this frontier area of research. In this work, we leverage a combination of first-principles techniques, foremost quantum-electrodynamical density functional theory, applied to the recent experimental realization by Thomas et al. [1] to unveil the microscopic mechanism behind the experimentally observed reduced reaction-rate under resonant vibrational strong light-matter coupling. We find that the cavity mode functions as a mediator between different vibrational eigenmodes, transferring vibrational excitation and anharmonicity, correlating vibrations, and ultimately strengthening the chemical bond of interest. Importantly, the resonant feature observed in experiment, theoretically elusive so far, naturally arises in our investigations. Our theoretical predictions in polaritonic chemistry shine new light on cavity induced mechanisms, providing a crucial control strategy in state-of-the-art photocatalysis and energy conversion, pointing the way towards generalized quantum optical control of chemical systems

    Hydraulic Aspects of Wetland Design

    Get PDF

    Krieger-Li-Iafrate approximation to the optimized effective potential approach in density functional theory for quantum electrodynamics

    Get PDF
    Many-body perturbation theory (MBPT) opens the possibility to construct approximations to every desired order of a ’weak’ interacting system. The drawback is a in general non-local interaction in space and time and it is therefore a demanding task to apply it to ’real’ systems. The optimized effective potential (OEP), derived by inversion of the Sham-Schlüter equation, is a natural connection between local density-functional theory and MBPT. In principle, this variationally best local potential reduces the problem to solving a simple system of Kohn-Sham equations combined with the solution of the OEP integral equation. However, converging the full set of OEP equations is a quite challenging procedure and is in practice rarely tackled. The Krieger-Li-Iafrate (KLI) approximation reduces the integral equation to an analytically solvable one via a dominant orbital approximation. It performs usually quite well for electronic systems. In the present work, we extend the OEP and KLI approaches to the case of electron-photon interactions in quantum optics and quantum electrodynamics. Here an effective electronic interaction is transmitted via transversal photons. We present first static and time-dependent results for the OEP and KLI approximations of the Rabi model and compare with the exact configuration interaction solution and the corresponding exact Kohn-Sham potentials
    • …
    corecore