2,194 research outputs found

    Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases

    Full text link
    We report a comprehensive experimental study and detailed model analysis of the terahertz dielectric response and density kinetics of excitons and unbound electron-hole pairs in GaAs quantum wells. A compact expression is given, in absolute units, for the complex-valued terahertz dielectric function of intra-excitonic transitions between the 1s and higher-energy exciton and continuum levels. It closely describes the terahertz spectra of resonantly generated excitons. Exciton ionization and formation are further explored, where the terahertz response exhibits both intra-excitonic and Drude features. Utilizing a two-component dielectric function, we derive the underlying exciton and unbound pair densities. In the ionized state, excellent agreement is found with the Saha thermodynamic equilibrium, which provides experimental verification of the two-component analysis and density scaling. During exciton formation, in turn, the pair kinetics is quantitatively described by a Saha equilibrium that follows the carrier cooling dynamics. The terahertz-derived kinetics is, moreover, consistent with time-resolved luminescence measured for comparison. Our study establishes a basis for tracking pair densities via transient terahertz spectroscopy of photoexcited quasi-two-dimensional electron-hole gases.Comment: 14 pages, 8 figures, final versio

    Incorporation of excluded volume correlations into Poisson-Boltzmann theory

    Get PDF
    We investigate the effect of excluded volume interactions on the electrolyte distribution around a charged macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account beyond standard mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several commonly proposed local density functional approaches for excluded volume interactions cannot be used for this purpose. Instead, we employ a non-local excess free energy by using a simple constant weight approach. We compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all investigated cases our simple weighted density theory yields more realistic results than the standard PB approach, whereas all local density theories do not improve on the PB density profiles but on the contrary, deviate even more from the simulation results.Comment: 23 pages, 7 figures, 1 tabl

    High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by γ-Irradiation

    Get PDF
    High-field magic angle spinning dynamic nuclear polarization (MAS DNP) is often used to enhance the sensitivity of solid-state nuclear magnetic resonance experiments by transferring spin polarization from electron spins to nuclear spins. Here, we demonstrate that γ-irradiation induces the formation of stable radicals in inorganic solids, such as fused quartz and borosilicate glasses, as well as organic solids, such as glucose, cellulose, and a urea/polyethylene polymer. The radicals were then used to polarize 29Si or 1H spins in the core of some of these materials. Significant MAS DNP enhancements (ε) of more than 400 and 30 were obtained for fused quartz and glucose, respectively. For other samples, negligible values of ε were obtained, likely due to low concentrations of radicals or the presence of abundant quadrupolar spins. These results demonstrate that ionizing radiation is a promising alternative method for generating stable radicals that are suitable for high-field MAS DNP experiments

    A recurrent neural network with ever changing synapses

    Full text link
    A recurrent neural network with noisy input is studied analytically, on the basis of a Discrete Time Master Equation. The latter is derived from a biologically realizable learning rule for the weights of the connections. In a numerical study it is found that the fixed points of the dynamics of the net are time dependent, implying that the representation in the brain of a fixed piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure

    Derivation of Hebb's rule

    Full text link
    On the basis of the general form for the energy needed to adapt the connection strengths of a network in which learning takes place, a local learning rule is found for the changes of the weights. This biologically realizable learning rule turns out to comply with Hebb's neuro-physiological postulate, but is not of the form of any of the learning rules proposed in the literature. It is shown that, if a finite set of the same patterns is presented over and over again to the network, the weights of the synapses converge to finite values. Furthermore, it is proved that the final values found in this biologically realizable limit are the same as those found via a mathematical approach to the problem of finding the weights of a partially connected neural network that can store a collection of patterns. The mathematical solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic ingredient. Thus, a biological network might realize the final results of the mathematician by the energetically economic rule for the adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure

    Phase transitions in a ferrofluid at magnetic field induced microphase separation

    Full text link
    In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic colloidal particles (ferrofluid) can form spatially modulated phases with a characteristic length determined by the competition between dipolar forces and short-range forces opposing density variations. We introduce models for thin-film ferrofluids in which magnetization and particle density are viewed as independent variables and in which the non-magnetic properties of the colloidal particles are described either by a lattice-gas entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe phases, separated in general by first-order phase boundaries.Comment: 12 pages, RevTex, to appear in PR

    Multiple-Point and Multiple-Time Correlations Functions in a Hard-Sphere Fluid

    Full text link
    A recent mode coupling theory of higher-order correlation functions is tested on a simple hard-sphere fluid system at intermediate densities. Multi-point and multi-time correlation functions of the densities of conserved variables are calculated in the hydrodynamic limit and compared to results obtained from event-based molecular dynamics simulations. It is demonstrated that the mode coupling theory results are in excellent agreement with the simulation results provided that dissipative couplings are included in the vertices appearing in the theory. In contrast, simplified mode coupling theories in which the densities obey Gaussian statistics neglect important contributions to both the multi-point and multi-time correlation functions on all time scales.Comment: Second one in a sequence of two (in the first, the formalism was developed). 12 pages REVTeX. 5 figures (eps). Submitted to Phys.Rev.

    Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems

    Full text link
    The theoretical framework for higher-order correlation functions involving multiple times and multiple points in a classical, many-body system developed by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to include tagged particle densities. Such densities have found an intriguing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables by expanding the slowly-evolving component of arbitrary variables in an infinite basis composed of the products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-point and multiple-time correlation functions are made tractable by applying the so-called N-ordering method. This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of a tagged particle density. The mode coupling expressions for higher order correlation functions are also succesfully tested against simulations of a hard sphere fluid at relatively low density.Comment: 15 pages, 2 figure

    Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience.

    Get PDF
    To overcome the limitations of the state-of-the-art influenza surveillance systems in Europe, we established in 2008 a European-wide consortium aimed at introducing an innovative information and communication technology approach for a web-based surveillance system across different European countries, called Influenzanet. The system, based on earlier efforts in The Netherlands and Portugal, works with the participation of the population in each country to collect real-time information on the distribution of influenza-like illness cases through web surveys administered to volunteers reporting their symptoms (or lack of symptoms) every week during the influenza season. Such a large European-wide web-based monitoring infrastructure is intended to rapidly identify public health emergencies, contribute to understanding global trends, inform data-driven forecast models to assess the impact on the population, optimize the allocation of resources, and help in devising mitigation and containment measures. In this article, we describe the scientific and technological issues faced during the development and deployment of a flexible and readily deployable web tool capable of coping with the requirements of different countries for data collection, during either a public health emergency or an ordinary influenza season. Even though the system is based on previous successful experience, the implementation in each new country represented a separate scientific challenge. Only after more than 5 years of development are the existing platforms based on a plug-and-play tool that can be promptly deployed in any country wishing to be part of the Influenzanet network, now composed of The Netherlands, Belgium, Portugal, Italy, the UK, France, Sweden, Spain, Ireland, and Denmark
    corecore