3,021 research outputs found

    Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, \u3ci\u3eGryllus firmus\u3c/i\u3e: Implications for life-history evolution

    Get PDF
    The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity – in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer. Nine supplemental files attached below

    Sapling age structure and growth series reveal a shift in recruitment dynamics of sugar maple and American beech over the last 40 years

    Get PDF
    Northern hardwoods have undergone a marked change in their dynamics, with American beech (Fagus grandifolia Ehrh.) increasing in abundance relative to sugar maple (Acer saccharum Marsh.). This study aims to better understand this sudden shift in recruitment dynamics. We performed an extensive analysis of the age structure, radial growth pattern, and release history on >700 saplings from 34 mature maple–beech stands of southern Quebec. We found (i) that the sapling age structures showed a progressive decrease in the establishment of maple relative to beech starting about 40 years ago, (ii) a change in the species growth hierarchy that started in the 1980s due to increasing radial growth of beech, (iii) that this growth trend is negligible for both maple and beech when we account for size and suppression status, and finally (iv) that the growth trend appears to be independent of present soil conditions. These results contrast with previous studies conducted at the adult stage that reported a growth decline for maple. We conclude that this change in recruitment dynamics is not related to growth, and consequently, further studies investigating this phenomenon should concentrate on establishment and survival

    Pea aphid winged and wingless males exhibit reproductive, gene expression, and lipid metabolism differences

    Get PDF
    Alternative, intraspecific phenotypes offer an opportunity to identify the mechanistic basis of differences asso- ciated with distinctive life history strategies. Wing dimorphic insects, in which both flight-capable and flight- incapable individuals occur in the same population, are particularly well-studied in terms of why and how the morphs trade offflight for reproduction. Yet despite a wealth of studies examining the differences between fe- male morphs, little is known about male differences, which could arise from different causes than those acting on females. Here we examined reproductive, gene expression, and biochemical differences between pea aphid ( Acyrthosiphon pisum ) winged and wingless males. We find that winged males are competitively superior in one- on-one mating circumstances, but wingless males reach reproductive maturity faster and have larger testes. We suggest that males tradeoffincreased local matings with concurrent possible inbreeding for outbreeding and in- creased ability to find mates. At the mechanistic level, differential gene expression between the morphs revealed a possible role for activin and insulin signaling in morph differences; it also highlighted genes not previously identified as being functionally important in wing polymorphism, such as genes likely involved in sperm produc- tion. Further, we find that winged males have higher lipid levels, consistent with their use as flight fuel, but we find no consistent patterns of different levels of activity among five enzymes associated with lipid biosynthesis. Overall, our analyses provide evidence that winged versus wingless males exhibit differences at the reproductive, gene expression, and biochemical levels, expanding the field’s understanding of the functional aspects of morph differences

    Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome

    Get PDF
    BACKGROUND: In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. RESULTS: To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. CONCLUSION: Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome

    Rarity of Males in Pea Aphids Results in Mutational Decay

    Full text link

    Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    Get PDF
    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids

    Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    Get PDF
    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids

    Wage losses in the year after breast cancer: Extent and determinants among Canadian women

    Get PDF
    This article is available open access through the publisher’s website at the link below. © The Author 2008.Background - Wage losses after breast cancer may result in considerable financial burden. Their assessment is made more urgent because more women now participate in the workforce and because breast cancer is managed using multiple treatment modalities that could lead to long work absences. We evaluated wage losses, their determinants, and the associations between wage losses and changes for the worse in the family's financial situation among Canadian women over the first 12 months after diagnosis of early breast cancer. Methods - We conducted a prospective cohort study among women with breast cancer from eight hospitals throughout the province of Quebec. Information that permitted the calculation of wage losses and information on potential determinants of wage losses were collected by three pretested telephone interviews conducted over the year following the start of treatment. Information on medical characteristics was obtained from medical records. The main outcome was the proportion of annual wages lost because of breast cancer. Multivariable analysis of variance using the general linear model was used to identify personal, medical, and employment characteristics associated with the proportion of wages lost. All statistical tests were two-sided. Results - Among 962 eligible breast cancer patients, 800 completed all three interviews. Of these, 459 had a paying job during the month before diagnosis. On average, these working women lost 27% of their projected usual annual wages (median = 19%) after compensation received had been taken into account. Multivariable analysis showed that a higher percentage of lost wages was statistically significantly associated with a lower level of education (Ptrend = .0018), living 50 km or more from the hospital where surgery was performed (P = .070), lower social support (P = .012), having invasive disease (P = .086), receipt of chemotherapy (P < .001), self-employment (P < .001), shorter tenure in the job (Ptrend < .001), and part-time work (P < .001). Conclusion - Wage losses and their effects on financial situation constitute an important adverse consequence of breast cancer in Canada.The Canadian Breast Cancer Research Alliance, Canadian Institutes of Health Research, and Fondation de l’Université Laval
    • …
    corecore