117 research outputs found
Electrical Polarization of Titanium Surfacesfor the Enhancement of Osteoblast Differentiation
Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, IncElectrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, In
The genetic architecture of neuroticism in 3301 Dutch adolescent twins as a function of age and sex: a study from the Dutch Twin Register
The objective of this study was to estimate the magnitude of genetic and environmental influences to variation in adolescent neuroticism as a function of age and sex. Neuroticism was assessed using the Amsterdamse Biografische Vragenlijst (ABV): a self-report personality instrument similar in content to the Eysenck Personality Questionnaire. Genetic modeling procedures, including age as modifier, were fitted to the total sample of 3301 Dutch adolescent twins aged 12 to 17 years (mean age 15.5). Significant influences of additive genetic factors (.59, 95% confidence intervals [CI] .54–.63) and unshared environmental factors (.41, 95% CI .37–.45) were found. Our data did not support a role of shared environment. Results showed that different genes may influence variation in neuroticism between girls and boys. No interaction was found between the variance components and age. Results generally support prior findings in adults and young children that neuroticism is influenced principally by additive genetic and unique environmental factors. The magnitude of the genetic component appears higher in the present sample of adolescents than in most studies of adults. The present study suggests that, in adolescence, different genes are expressed in boys and girls
Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion
The personality traits of neuroticism and extraversion are predictive of a number of social and behavioural outcomes and psychiatric disorders. Twin and family studies have reported moderate heritability estimates for both traits. Few associations have been reported between genetic variants and neuroticism/extraversion, but hardly any have been replicated. Moreover, the ones that have been replicated explain only a small proportion of the heritability (<∼2%). Using genome-wide single-nucleotide polymorphism (SNP) data from ∼12 000 unrelated individuals we estimated the proportion of phenotypic variance explained by variants in linkage disequilibrium with common SNPs as 0.06 (s.e.=0.03) for neuroticism and 0.12 (s.e.=0.03) for extraversion. In an additional series of analyses in a family-based sample, we show that while for both traits ∼45% of the phenotypic variance can be explained by pedigree data (that is, expected genetic similarity) one third of this can be explained by SNP data (that is, realized genetic similarity). A part of the so-called ‘missing heritability' has now been accounted for, but some of the reported heritability is still unexplained. Possible explanations for the remaining missing heritability are that: (i) rare variants that are not captured by common SNPs on current genotype platforms make a major contribution; and/ or (ii) the estimates of narrow sense heritability from twin and family studies are biased upwards, for example, by not properly accounting for nonadditive genetic factors and/or (common) environmental factors
Database analysis of children and adolescents with Bipolar Disorder consuming a micronutrient formula
<p>Abstract</p> <p>Background</p> <p>Eleven previous reports have shown potential benefit of a 36-ingredient micronutrient formula (known as EMPowerplus) for the treatment of psychiatric symptoms. The current study asked whether children (7-18 years) with pediatric bipolar disorder (PBD) benefited from this same micronutrient formula; the impact of Attention-Deficit/Hyperactivity Disorder (ADHD) on their response was also evaluated.</p> <p>Methods</p> <p>Data were available from an existing database for 120 children whose parents reported a diagnosis of PBD; 79% were taking psychiatric medications that are used to treat mood disorders; 24% were also reported as ADHD. Using Last Observation Carried Forward (LOCF), data were analyzed from 3 to 6 months of micronutrient use.</p> <p>Results</p> <p>At LOCF, mean symptom severity of bipolar symptoms was 46% lower than baseline (effect size (ES) = 0.78) (<it>p </it>< 0.001). In terms of responder status, 46% experienced >50% improvement at LOCF, with 38% still taking psychiatric medication (52% drop from baseline) but at much lower levels (74% reduction in number of medications being used from baseline). The results were similar for those with both ADHD and PBD: a 43% decline in PBD symptoms (ES = 0.72) and 40% in ADHD symptoms (ES = 0.62). An alternative sample of children with just ADHD symptoms (n = 41) showed a 47% reduction in symptoms from baseline to LOCF (ES = 1.04). The duration of reductions in symptom severity suggests that benefits were not attributable to placebo/expectancy effects. Similar findings were found for younger and older children and for both sexes.</p> <p>Conclusions</p> <p>The data are limited by the open label nature of the study, the lack of a control group, and the inherent self-selection bias. While these data cannot establish efficacy, the results are consistent with a growing body of research suggesting that micronutrients appear to have therapeutic benefit for children with PBD with or without ADHD in the absence of significant side effects and may allow for a reduction in psychiatric medications while improving symptoms. The consistent reporting of positive changes across multiple sites and countries are substantial enough to warrant a call for randomized clinical trials using micronutrients.</p
Host Sexual Dimorphism and Parasite Adaptation
Disease expression and prevalence often vary in the different sexes of the host. This is typically attributed to innate differences of the two sexes but specific adaptations by the parasite to one or other host sex may also contribute to these observations
Elevated 17β-Estradiol Protects Females from Influenza A Virus Pathogenesis by Suppressing Inflammatory Responses
Studies of the 1918 H1N1 influenza pandemic, the H5N1 avian influenza outbreak, and the 2009 H1N1 pandemic illustrate that sex and pregnancy contribute to severe outcome from infection, suggesting a role for sex steroids. To test the hypothesis that the sexes respond differently to influenza, the pathogenesis of influenza A virus infection was investigated in adult male and female C57BL/6 mice. Influenza infection reduced reproductive function in females and resulted in greater body mass loss, hypothermia, and mortality in females than males. Whereas lung virus titers were similar between the sexes, females had higher induction of proinflammatory cytokines and chemokines, including TNF-α, IFN-γ, IL-6, and CCL2, in their lungs than males. Removal of the gonads in both sexes eliminated the sex difference in influenza pathogenesis. Manipulation of testosterone or dihydrotestosterone concentrations in males did not significantly impact virus pathogenesis. Conversely, females administered high doses of estradiol had a ≥10-fold lower induction of TNF-α and CCL2 in the lungs and increased rates of survival as compared with females that had either low or no estradiol. The protective effects of estradiol on proinflammatory cytokines and chemokines, morbidity, and mortality were primarily mediated by signaling through estrogen receptor α (ERα). In summary, females suffer a worse outcome from influenza A virus infection than males, which can be reversed by administration of high doses of estradiol to females and reflects differences in the induction of proinflammatory responses and not in virus load
A whole genome association study of neuroticism using DNA pooling.
We describe a multistage approach to identify single nucleotide polymorphisms (SNPs) associated with neuroticism, a personality trait that shares genetic determinants with major depression and anxiety disorders. Whole genome association with 452 574 SNPs was performed on DNA pools from approximately 2000 individuals selected on extremes of neuroticism scores from a cohort of 88 142 people from southwest England. The most significant SNPs were then genotyped on independent samples to replicate findings. We were able to replicate association of one SNP within the PDE4D gene in a second sample collected by our laboratory and in a family-based test in an independent sample; however, the SNP was not significantly associated with neuroticism in two other independent samples. We also observed an enrichment of low P-values in known regions of copy number variations. Simulation indicates that our study had approximately 80% power to identify neuroticism loci in the genome with odds ratio (OR)>2, and approximately 50% power to identify small effects (OR=1.5). Since we failed to find any loci accounting for more than 1% of the variance, the heritability of neuroticism probably arises from many loci each explaining much less than 1%. Our findings argue the need for much larger samples than anticipated in genetic association studies and that the biological basis of emotional disorders is extremely complex
Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states
Purpose In quality-of-life (QL) research, the genetic susceptibility of negative and positive emotions is frequently ignored, taken for granted, or treated as noise. The objectives are to describe: (1) the major findings of studies addressing the heritable and environmental causes of variation in negative and positive emotional states and (2) the major biological pathways of and genetic variants involved in these emotional states
- …