58,996 research outputs found
Photoelectron spectrometer with means for stabilizing sample surface potential
An improved X-ray photoelectron spectrometer is disclosed, which includes circuit means to determine the surface potential of a sample, e.g., an insulator. The circuit means comprise an electron gun, whose potential is modulated at a preselected frequency above and below a selected potential with respect to the spectrometer common potential, e.g., ground. The beam of electrons is directed to the sample surface. The sample's surface potential is offset by an offset power supply with respect to the spectrometer common potential until the ac current which flows through the sample reaches a peak amplitude. A lock-in amplifier is included to measure the ac current in phase with the modulating frequency
Seeing Star Formation Regions with Gravitational Microlensing
We qualitatively study the effects of gravitational microlensing on our view
of unresolved extragalactic star formation regions. Using a general
gravitational microlensing configuration, we perform a number of simulations
that reveal that specific imprints of the star forming region are imprinted,
both photometrically and spectroscopically, upon observations. Such
observations have the potential to reveal the nature and size of these star
forming regions, through the degree of variability observed in a monitoring
campaign, and hence resolve the star formation regions in distant galaxies
which are too small to be probed via more standard techniques.Comment: 7 pages, 8 figures, ApJ accepte
BOILING HEAT TRANSFER TO LIQUID HYDROGEN AND NITROGEN IN FORCED FLOW
Boiling heat transfer to liquid hydrogen and nitrogen in forced flo
Automatic transponder
A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation
Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddlepoints
Contrary to naive expectation, diluting the stellar component of the lensing
galaxy in a highly magnified system with smoothly distributed ``dark'' matter
increases rather than decreases the microlensing fluctuations caused by the
remaining stars. For a bright pair of images straddling a critical curve, the
saddlepoint (of the arrival time surface) is much more strongly affected than
the associated minimum. With a mass ratio of smooth matter to microlensing
matter of 4:1, a saddlepoint with a macro-magnification of mu = 9.5 will spend
half of its time more than a magnitude fainter than predicted. The anomalous
flux ratio observed for the close pair of images in MG0414+0534 is a factor of
five more likely than computed by Witt, Mao and Schechter if the smooth matter
fraction is as high as 93%. The magnification probability histograms for
macro-images exhibit distinctly different structure that varies with the smooth
matter content, providing a handle on the smooth matter fraction. Enhanced
fluctuations can manifest themselves either in the temporal variations of a
lightcurve or as flux ratio anomalies in a single epoch snapshot of a multiply
imaged system. While the millilensing simulations of Metcalf and Madau also
give larger anomalies for saddlepoints than for minima, the effect appears to
be less dramatic for extended subhalos than for point masses. Morever,
microlensing is distinguishable from millilensing because it will produce
noticeable changes in the magnification on a time scale of a decade or less.Comment: As accepted for publication in ApJ. 17 pages. Substantial revisions
include a discussion of constant M/L models and the calculation of a
"photometric" dark matter fraction for MG0414+053
Effect of Multiple Higgs Fields on the Phase Structure of the SU(2)-Higgs Model
The SU(2)-Higgs model, with a single Higgs field in the fundamental
representation and a quartic self-interaction, has a Higgs region and a
confinement region which are analytically connected in the parameter space of
the theory; these regions thus represent a single phase. The effect of multiple
Higgs fields on this phase structure is examined via Monte Carlo lattice
simulations. For the case of N>=2 identical Higgs fields, there is no remaining
analytic connection between the Higgs and confinement regions, at least when
Lagrangian terms that directly couple different Higgs flavours are omitted. An
explanation of this result in terms of enhancement from overlapping phase
transitions is explored for N=2 by introducing an asymmetry in the hopping
parameters of the Higgs fields. It is found that an enhancement of the phase
transitions can still occur for a moderate (10%) asymmetry in the resulting
hopping parameters.Comment: 10 pages, 8 figures. References updated and minor typos correcte
The perimeter of large planar Voronoi cells: a double-stranded random walk
Let be the probability for a planar Poisson-Voronoi cell to have
exactly sides. We construct the asymptotic expansion of up to
terms that vanish as . We show that {\it two independent biased
random walks} executed by the polar angle determine the trajectory of the cell
perimeter. We find the limit distribution of (i) the angle between two
successive vertex vectors, and (ii) the one between two successive perimeter
segments. We obtain the probability law for the perimeter's long wavelength
deviations from circularity. We prove Lewis' law and show that it has
coefficient 1/4.Comment: Slightly extended version; journal reference adde
Microlensing of Broad Absorption Line Quasars: Polarization Variability
Roughly 10% of all quasars exhibit Broad Absorption Line (BAL) features which
appear to arise in material outflowing at high velocity from the active
galactic nucleus (AGN). The details of this outflow are, however, very poorly
constrained and the particular nature of the BAL material is essentially
unknown. Recently, new clues have become available through polarimetric studies
which have found that BAL troughs are more polarized than the quasar continuum
radiation. To explain these observations, models where the BAL material
outflows equatorially across the surface of the dusty torus have been
developed. In these models, however, several sources of the BAL polarization
are possible. Here, we demonstrate how polarimetric monitoring of
gravitationally lensed quasars, such as H 1413+117, during microlensing events
can not only distinguish between two currently popular models, but can also
provide further insight into the structure at the cores of BAL quasars.Comment: 17 pages, 3 figures, accepted to PAS
- …