48,923 research outputs found

    The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays

    Full text link
    The focus of this article is on recent results on ultra-high energy cosmic rays obtained with the Pierre Auger Observatory. The world's largest instrument of this type and its performance are described. The observations presented here include the energy spectrum, the primary particle composition, limits on the fluxes of photons and neutrinos and a discussion of the anisotropic distribution of the arrival directions of the most energetic particles. Finally, plans for the construction of a Northern Auger Observatory in Colorado, USA, are discussed.Comment: Proceedings of the International Workshop on Advances in Cosmic Ray Science, Waseda University, Shinjuku, Tokyo, Japan, March 2008; to be published in the Journal of the Physical Society of Japan (JPSJ) supplemen

    Aspects of Labor Economics

    Get PDF

    An Analytical Model for the Triaxial Collapse of Cosmological Perturbations

    Full text link
    We present an analytical model for the non-spherical collapse of overdense regions out of a Gaussian random field of initial cosmological perturbations. The collapsing region is treated as an ellipsoid of constant density, acted upon by the quadrupole tidal shear from the surrounding matter. The dynamics of the ellipsoid is set by the ellipsoid self-gravity and the external quadrupole shear. Both forces are linear in the coordinates and therefore maintain homogeneity of the ellipsoid at all times. The amplitude of the external shear is evolved into the non-linear regime in thin spherical shells that are allowed to move only radially according to the mass interior to them. We describe how the initial conditions can be drawn in the appropriate correlated way from a random field of initial density perturbations. By considering many random realizations of the initial conditions, we calculate the distribution of shapes and angular momenta acquired by objects through the coupling of their quadrupole moment to the tidal shear. The average value of the spin parameter, 0.04, is found to be only weakly dependent on the system mass, the mean cosmological density, or the initial power spectrum of perturbations, in agreement with N-body simulations. For the cold dark matter power spectrum, most objects evolve from a quasi-spherical initial state to a pancake or filament and then to complete virialization. Low-spin objects tend to be more spherical. The evolution history of shapes is primarily induced by the external shear and not by the initial triaxiality of the objects. The statistical distribution of the triaxial shapes of collapsing regions can be used to test cosmological models against galaxy surveys on large scales.Comment: 42 pages, Tex, followed by 10 uuencoded figure

    A Hierarchical Bayesian Model of Pitch Framing

    Full text link
    Since the advent of high-resolution pitch tracking data (PITCHf/x), many in the sabermetrics community have attempted to quantify a Major League Baseball catcher's ability to "frame" a pitch (i.e. increase the chance that a pitch is called as a strike). Especially in the last three years, there has been an explosion of interest in the "art of pitch framing" in the popular press as well as signs that teams are considering framing when making roster decisions. We introduce a Bayesian hierarchical model to estimate each umpire's probability of calling a strike, adjusting for pitch participants, pitch location, and contextual information like the count. Using our model, we can estimate each catcher's effect on an umpire's chance of calling a strike.We are then able to translate these estimated effects into average runs saved across a season. We also introduce a new metric, analogous to Jensen, Shirley, and Wyner's Spatially Aggregate Fielding Evaluation metric, which provides a more honest assessment of the impact of framing

    The Comparison of Creatinine and Cystatin C Value in Preeclampsia Severity and Neonatal Outcome

    Full text link
    Objectives: to compare the levels of creatinine and cystatin C with the severity of preeclampsia, and assess neonatal outcomes.Materials and Methods: Creatinine, cystatin C, and neonatal outcomes were assesed in 17 normotensive samples, 17 samples of mild preeclampsia and 17 samples of severe preeclampsia. Analysis of data with statistical tests of ANOVA and t test differences between 2 proportions.Results: The mean levels of creatinine in the normotensive group, mild preeclampsia, severe preeclampsia are 0.56 mg/dL, 0.67 mg/ dL, and 0.75 mg/dL, p=0.138; While on cystatin C are 0.82 mg/L, 1.03 mg/L and 1.32 mg/L, p=0.000. The adverse neonatal out-come wasn't found in the normotensive group. In mild pre-eclampsia obtained 1 preterm birth and 1 intrauterine fetal death (IUFD), whereas in severe preeclampsia obtained 3 babies born preterm, 1 IUFD, and 1 intrauterine growth restriction (IUGR).Conclusion: levels of cystatin C was increased significantly in line with increased severity of preeclampsia, whereas creatinine was not increased significantly. Cystatin C is better than crea-tinine as a marker of renal dysfunction in preeclampsia patients. There was an increase in adverse neonatal outcomes in the group of preeclampsia

    A Bayesian analysis of the 27 highest energy cosmic rays detected by the Pierre Auger Observatory

    Full text link
    It is possible that ultra-high energy cosmic rays (UHECRs) are generated by active galactic nuclei (AGNs), but there is currently no conclusive evidence for this hypothesis. Several reports of correlations between the arrival directions of UHECRs and the positions of nearby AGNs have been made, the strongest detection coming from a sample of 27 UHECRs detected by the Pierre Auger Observatory (PAO). However, the PAO results were based on a statistical methodology that not only ignored some relevant information (most obviously the UHECR arrival energies but also some of the information in the arrival directions) but also involved some problematic fine-tuning of the correlation parameters. Here we present a fully Bayesian analysis of the PAO data (collected before 2007 September), which makes use of more of the available information, and find that a fraction F_AGN = 0.15^(+0.10)_(-0.07) of the UHECRs originate from known AGNs in the Veron-Cetty & Veron (VCV) catalogue. The hypothesis that all the UHECRs come from VCV AGNs is ruled out, although there remains a small possibility that the PAO-AGN correlation is coincidental (F_AGN = 0.15 is 200 times as probable as F_AGN = 0.00).Comment: MNRAS, accepted; 8 pages, 7 figure

    Correlations of a bound interface over a random substrate

    Full text link
    The correlation function of a one-dimensional interface over a random substrate, bound to the substrate by a pressure term, is studied by Monte-Carlo simulation. It is found that the height correlation , averaged over the substrate disorder, fits a form exp(-(j/b)^c) to a surprising precision in the full range of j where the correlation is non-negligible. The exponent c increases from 1.0 to 1.5 when the interface tension is taken larger and larger.Comment: 7 pages, 5 figure
    corecore