36 research outputs found

    Debye temperature of disordered bcc-Fe-Cr alloys

    Full text link
    Debye temperature, TD, of Fe100-xCrx disordered alloys with 0<x<99.9 was determined from the temperature dependence of the centre shift of 57Fe Mossbauer spectra recorded in the temperature range of 80-300K. Its compositional dependence shows an interesting non-monotonous behaviour. For 0<x<~45 as well as for ~75<x<~95 the Debye temperature is enhanced relative to its value of a metallic iron, and at x=~3 there is a local maximum having a relative height of ~12% compared to a pure iron. For ~45~95 the Debye temperature is smaller than the one for the metallic iron, with a local minimum at x=~55 at which the relative decrease of TD amounts to ~12%. The first maximum coincides quite well with that found for the spin-waves stiffness coefficient, D0, while the pretty steep decrease observed for x>~95 which is indicative of a decoupling of the probe Fe atoms from the underlying chromium matrix is likely related to the spin-density waves which constitute the magnetic structure of chromium in that interval of composition. The harmonic force constant calculated from the Debye temperature of the least Fe-concentrated alloy (x>99.9) amounts to only 23% of the one characteristic of a pure chromium.Comment: 15 pages, 7 figures, 26 reference

    Zinc ferrite nanoparticles as perspective functional materials for applications in casting technologies

    Get PDF
    In this article it discuss on possible application of magnetic oxide nanoparticles, namely non-stoichiometric zinc ferrite nanoparticles as a functionalizing agent in foundry processes. Thermal analysis showed a weight loss of the sample at 1 273 K in an amount of 7,7 %, which is a result of the following processes taking place in different temperature ranges. Upon its thermal treatment Zn0,4Fe2,6O4 decomposes to zinc oxide and iron (III) oxide (first stage) and next to iron (II,III) oxide and oxygen (second stage). The degree of decomposition was expressed as Fe2+ / Fetotal. Mössbauer spectroscopy showed that the over 30 % of Fe3+ present in starting material was reduced to Fe2+

    Coexistence of antiferromagnetic ordering and superconductivity in the Ba(Fe0.961Rh0.039)(2)As-2 compound studied by Mossbauer spectroscopy

    Get PDF
    The results of a Fe-57 Mossbauer spectroscopy study between 2.0 and 294 K of superconducting Ba(Fe0.961Rh0.039)(2)As-2 are reported. The main component of the electric field gradient tensor at 294 K is shown to be positive and its increase with decreasing temperature is well described by a T-3/2 power-law relation. The shape of the Mossbauer spectra below the Neel temperature T-N = 55.5(1) K is shown to result from the presence of doping-induced disorder rather than of incommensurate spin-density-wave order. The measured hyperfine magnetic field reaches its maximum value at the critical temperature T-c = 14 K and then decreases by 4.2% upon further cooling to 2.0 K. This constitutes direct evidence of the coexistence of and competition between superconductivity and magnetic order. The extrapolated value of the Fe magnetic moment at 0 K is determined to be 0.35(1) mu(B). The Debye temperature of Ba(Fe0.961Rh0.039)(2)As-2 is found to be 357(3) K

    Moessbauer spectroscopy evidence for the lack of iron magnetic moment in superconducting FeSe

    Full text link
    Superconducting FeSe has been investigated by measurements of the magnetic susceptibility versus temperature and Moessbauer spectroscopy at various temperatures including strong external magnetic fields applied to the absorber. It was found that isomer shift exhibits sharply defined increase at about 105 K leading to the lowering of the electron density on iron nucleus by 0.02 electron/a.u.^3. Above jump in the electron density is correlated with the transition from the P4/nmm to the Cmma structure, while decreasing temperature. Moessbauer measurements in the external magnetic field and for temperatures below transition to the superconducting state revealed null magnetic moment on iron atoms. Hence, the compound exhibits either Pauli paramagnetism or diamagnetic behavior. The principal component of the electric field gradient on the iron nucleus was found as negative on the iron site.Comment: 9 pages, 6 figures, 1 tabl

    THE CHARACTER OF MAGNETIC ORDER IN Fe-Cr ALLOYS-MÖSSBAUER EFFECT STUDY

    No full text
    No abstract availabl
    corecore