7,391 research outputs found

    Microscopic mechanisms of magnetization reversal

    Full text link
    Two principal scenarios of magnetization reversal are considered. In the first scenario all spins perform coherent motion and an excess of magnetic energy directly goes to a nonmagnetic thermal bath. A general dynamic equation is derived which includes a tensor damping term similar to the Bloch-Bloembergen form but the magnetization magnitude remains constant for any deviation from equilibrium. In the second reversal scenario, the absolute value of the averaged sample magnetization is decreased by a rapid excitation of nonlinear spin-wave resonances by uniform magnetization precession. We have developed an analytic k-space micromagnetic approach that describes this entire reversal process in an ultra-thin soft ferromagnetic film for up to 90^{o} deviation from equilibrium. Conditions for the occurrence of the two scenarios are discussed

    Hyperfine frequency shift in two-dimensional atomic hydrogen

    Full text link
    We propose the explanation of a surprisingly small hyperfine frequency shift in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced triplet-singlet transitions of atomic pairs in the fully spin-polarized sample are forbidden. The apparent nonzero shift is associated with the density-dependent wall shift of the hyperfine constant and the pressure shift due to the presence of H atoms in the hyperfine state aa not involved in the observed bcb\to c transition. The interaction of adsorbed atoms with one another effectively decreases the binding energy and, consequently, the wall shift by the amount proportional to their density. The pressure shift of the bcb\to c resonance comes from the fact that the impurity aa-state atoms interact differently with the initial bb-state and final cc-state atoms and is also linear in density. The net effect of the two contributions, both specific for 2D hydrogen, is comparable with the experimental observation. To our knowledge, this is the first mentioning of the density-dependent wall shift. We also show that the difference between the triplet and singlet scattering lengths of H atoms, atas=30(5)a_t-a_s=30(5) pm, is exactly twice smaller than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101}, 263003 (2008).Comment: 4 pages, no figure

    Thermal compression of two-dimensional atomic hydrogen to quantum degeneracy

    Full text link
    We describe experiments where 2D atomic hydrogen gas is compressed thermally at a small "cold spot" on the surface of superfluid helium and detected directly with electron-spin resonance. We reach surface densities up to 5e12 1/cm^2 at temperatures of approximately 100 mK corresponding to the maximum 2D phase-space density of about 1.5. By independent measurements of the surface density and its decay rate we make the first direct determination of the three-body recombination rate constant and get the value of 2e-25 cm^4/s for its upper bound, which is an order of magnitude smaller than previously reported experimental results.Comment: 4 pages, 4 postscript figures, bibliography (.bbl) file, submitted to PR

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Robust computer-aided synthesis and optimization of linear multivariable control systems with varying plant dynamics via AUTOCON

    Get PDF
    AUTOCON is an automated computer-aided design tool for the synthesis and optimization of linear multivariable control systems based upon user-defined control parameter optimization. Violations in stability and performance requirements are computed from constraints on Single Input/Single Output (SISO) open- and closed-loop transfer function frequency responses, and from constraints on the singular-value frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for all critical plant variations. Optimum nonlinear programming algorithms are used in the search for local constrained solutions in which violations in stability and performance are caused either to vanish or be minimized for a proper selection of the control parameters. Classical control system stability and performance design can, in this way, be combined with modern multivariable robustness methods to offer general frequency response loop-shaping via a computer-aided design tool. Complete Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots are produced, including user-defined boundary responses. AUTOCON is used to synthesize and optimize the lateral/directional flight control system for a typical high-performance aircraft

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    On Uniqueness of Boundary Blow-up Solutions of a Class of Nonlinear Elliptic Equations

    Full text link
    We study boundary blow-up solutions of semilinear elliptic equations Lu=u+pLu=u_+^p with p>1p>1, or Lu=eauLu=e^{au} with a>0a>0, where LL is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.Comment: To appear in Comm. Partial Differential Equations; 10 page

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm2^{-2}, yielding the value 1.2(1)×10151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment
    corecore