Two principal scenarios of magnetization reversal are considered. In the
first scenario all spins perform coherent motion and an excess of magnetic
energy directly goes to a nonmagnetic thermal bath. A general dynamic equation
is derived which includes a tensor damping term similar to the
Bloch-Bloembergen form but the magnetization magnitude remains constant for any
deviation from equilibrium. In the second reversal scenario, the absolute value
of the averaged sample magnetization is decreased by a rapid excitation of
nonlinear spin-wave resonances by uniform magnetization precession. We have
developed an analytic k-space micromagnetic approach that describes this entire
reversal process in an ultra-thin soft ferromagnetic film for up to 90^{o}
deviation from equilibrium. Conditions for the occurrence of the two scenarios
are discussed