289 research outputs found

    Simulability of Imperfect Gaussian and Superposition Boson Sampling

    Get PDF
    We study the hardness of classically simulating Gaussian boson sampling at nonzero photon distinguishability. We find that similar to regular boson sampling, distinguishability causes exponential attenuation of the many-photon interference terms in Gaussian boson sampling. Barring an open problem in the theory of matrix permanents, this leads to an efficient classical algorithm to simulate Gaussian boson sampling in the presence of distinguishability. We also study a new form of boson sampling based on photon number superposition states, for which we also show noise sensivity. The fact that such superposition boson sampling is not simulable with out method at zero distinguishability is the first evidence for the computational hardness of this problem

    Marginal probabilities in boson samplers with arbitrary input states

    Get PDF
    With the recent claim of a quantum advantage demonstration in photonics by Zhong et al, the question of the computation of lower-order approximations of boson sampling with arbitrary quantum states at arbitrary distinguishability has come to the fore. In this work, we present results in this direction, building on the results of Clifford and Clifford. In particular, we show: 1) How to compute marginal detection probabilities (i.e. probabilities of the detection of some but not all photons) for arbitrary quantum states. 2) Using the first result, how to generalize the sampling algorithm of Clifford and Clifford to arbitrary photon distinguishabilities and arbitrary input quantum states. 3) How to incorporate truncations of the quantum interference into a sampling algorithm. 4) A remark considering maximum likelihood verification of the recent photonic quantum advantage experiment

    Benchmarking of Gaussian boson sampling using two-point correlators

    Get PDF
    Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this contribution, we study two-point photon-number correlation functions to gain insight into the interference of Gaussian states in optical networks. We investigate the characteristic features of statistical signatures which enable us to distinguish classical from quantum interference. In contrast to the typical implementation of boson sampling, we find additional contributions to the correlators under study which stem from the phase dependence of Gaussian states and which are not observable when Fock states interfere. Using the first three moments, we formulate the tools required to experimentally observe signatures of quantum interference of Gaussian states using two outputs only. By considering the current architectural limitations in realistic experiments, we further show that a statistically significant discrimination between quantum and classical interference is possible even in the presence of loss, noise, and a finite photon-number resolution. Therefore, we formulate and apply a theoretical framework to benchmark the quantum features of Gaussian boson sampling under realistic conditions

    Quantum noise limited and entanglement-assisted magnetometry

    Full text link
    We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First we apply an optimal sequence of state preparation, evolution, and the back-action evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally

    Simulating boson sampling in lossy architectures

    Get PDF
    Photon losses are among the strongest imperfections affecting multi-photon interference. Despite their importance, little is known about their effect on boson sampling experiments. In this work we show that using classical computers, one can efficiently simulate multi-photon interference in all architectures that suffer from an exponential decay of the transmission with the depth of the circuit, such as integrated photonic circuits or optical fibers. We prove that either the depth of the circuit is large enough that it can be simulated by thermal noise with an algorithm running in polynomial time, or it is shallow enough that a tensor network simulation runs in quasi-polynomial time. This result suggests that in order to implement a quantum advantage experiment with single-photons and linear optics new experimental platforms may be needed

    Gaussian Optical Ising Machines

    Get PDF
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems.Comment: 6 page

    Tensor network states in time-bin quantum optics

    Full text link
    The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments

    Boson Sampling in Low-depth Optical Systems

    Get PDF
    Optical losses are the main obstacle to demonstrating a quantum advantage via boson sampling without leaving open the possibility of classical spoofing. We propose a method for generating low-depth optical circuits suitable for boson sampling with very high efficiencies. Our circuits require only a constant number of optical components (namely three) to implement an optical transformation suitable for demonstrating a quantum advantage. Consequently, our proposal has a constant optical loss regardless of the number of optical modes. We argue that sampling from our family of circuits is computationally hard by providing numerical evidence that our family of circuits converges to that of the original boson sampling proposal in the limit of large optical systems. Our work opens a new route to demonstrate an optical quantum advantage.Comment: 11 pages, 6 figure
    corecore