
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulating boson sampling in lossy architectures

Citation for published version:
García-Patrón, R, Renema, JJ & Shchesnovich, V 2019, 'Simulating boson sampling in lossy architectures',
Quantum, vol. 3, pp. 169-188. https://doi.org/10.22331/q-2019-08-05-169

Digital Object Identifier (DOI):
10.22331/q-2019-08-05-169

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Quantum

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

https://www.research.ed.ac.uk/portal/en/persons/raul-garciapatron-sanchez(efc0de8a-4df0-492b-8577-e276f99fdf19).html
https://www.research.ed.ac.uk/portal/en/publications/simulating-boson-sampling-in-lossy-architectures(7502289b-c2d4-4c4f-93a3-4bb74f889457).html
https://doi.org/10.22331/q-2019-08-05-169
https://doi.org/10.22331/q-2019-08-05-169
https://www.research.ed.ac.uk/portal/en/publications/simulating-boson-sampling-in-lossy-architectures(7502289b-c2d4-4c4f-93a3-4bb74f889457).html


Simulating boson sampling in lossy architectures
Raúl García-Patrón1, Jelmer J. Renema2,3, and Valery Shchesnovich4

1Centre for Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Université Libre de Bruxelles,
1050 Brussels, Belgium

2Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
3University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
4Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-170 Brazil.
July 25, 2019

Photon losses are among the strongest
imperfections affecting multi-photon inter-
ference. Despite their importance, lit-
tle is known about their effect on boson
sampling experiments. In this work we
show that using classical computers, one
can efficiently simulate multi-photon in-
terference in all architectures that suffer
from an exponential decay of the trans-
mission with the depth of the circuit, such
as integrated photonic circuits or optical
fibers. We prove that either the depth of
the circuit is large enough that it can be
simulated by thermal noise with an algo-
rithm running in polynomial time, or it
is shallow enough that a tensor network
simulation runs in quasi-polynomial time.
This result suggests that in order to im-
plement a quantum advantage experiment
with single-photons and linear optics new
experimental platforms may be needed.

1 Introduction
In 2003 Knill, Laflamme and Milburn showed
that single-photon sources and linear optics are
sufficient to achieve universal quantum computa-
tion [16]. A single-photon and linear optics ver-
sion of measurement based quantum computation
has also been thoroughly studied [25, 46]. In both
proposals, a key component to reach universality
is the capability for a measurement outcome to
change the gates implemented later in time, i.e.,
using active feed-forward, a challenging experi-
mental requirement [39]. In 2010, Aaronson and
Arkhipov demonstrated that removing the feed-
forward condition provides a framework, called
Raúl García-Patrón: raulgarciapatron@gmail.com

Figure 1: In a boson sampling device N single photons
are sent over anM mode linear optical circuit composed
ofM layers of two-mode coupling gates and detected at
the output with photon counting detectors. The circuit
being selected randomly from the Haar measure, we can
place the N photons over the first N modes without lost
of generality.

boson sampling, that does not seem to be suffi-
cient for universal quantum computation but is
hard to simulate on a classical computer [2]. The
key idea behind their proof is the connection be-
tween the output statistics of non-interacting in-
distinguishable photons and the permanent [8], a
quantity know to be #P-hard to compute [1, 28].
As shown in Figure 1, a boson sampling device
implements an interference of N single photons
over a randomly-selected M -mode linear optical
interferometer and measures each output mode
with a photon counting detector. An M -mode
linear optical interferometer can be build out
of two-mode couplers (beamsplitters) acting on
neighboring modes and single-mode phases gates.
In order to generate an arbitrary linear optical
circuit, a depth of M is needed [12, 43].

Since 2013, a variety of experimental quan-
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tum optics groups have implemented proof-of-
principle implementations based on different ar-
chitectures, such as reconfigurable integrated
photonic circuits [7, 47, 51], fiber-loops [20], 3D
waveguides [14] or multimode fibers [15], that
have the potential of being scalable and therefore
are candidates for a quantum advantage demon-
stration. The motivation to further simplify the
experimental scheme led to the proposal of scat-
tershot boson sampling, a sampling problem as
hard to simulate as the initial boson sampling
proposal. Scattershot boson sampling solves the
problem of obtaining N single photons from state
of the art probabilistic single-photon sources by
using M heralded two-mode squeezed vacuum
state sources, one per input mode of the boson
sampling circuit [30].

The lack of fault-tolerant error correction in
quantum advantage architectures, such as in bo-
son sampling experiments, implies that increas-
ing the size and depth of the circuit would ul-
timately lead to a system that is equivalent to
sampling random noise. Therefore, the existence
of an opportunity window where noise has not
yet destroyed the quantum advantage but a clas-
sical algorithm, such as [13, 33], can no longer
simulate the system is fundamental for a con-
clusive quantum advantage experiment. It is
therefore of paramount importance to have a
good understanding of when noise makes a quan-
tum advantage architecture classically simulat-
able. Rahimi-Keshari et al. provided in [42] a
first rigorous bound, which required both losses
and dark counts of the detectors. Unfortunately,
this bound is independent of the size of the sys-
tem and can not provide an answer in terms of
losses independently of additional noise (dark-
counts of detectors).

Together with the indistinguishably of photons,
for which an algorithm to simulate partially dis-
tinguishable photons was demonstrated recently
in [45], losses are the most damaging imperfec-
tions challenging boson sampling. Despite its im-
portance, little is know about the effect of losses.
Firstly, it was proven in [3] that boson sampling
with losses remains hard in the regime of a con-
stant number of photons lost, a rather limiting
assumption. Secondly, modeling a lossy circuit
as a larger lossless one with additional environ-
mental modes, it is rather straightforward to see
that the algorithm of Clifford and Clifford [13]

can be extended to lossy architectures with only
a constant overhead. This has two implications:
(i) if an ideal boson sampling circuit withN input
photons can be simulated (with an exponential-
time algorithm), the same can be achieved for ar-
bitrary losses; (ii) lossy multi-photon interference
becomes classically simulatable when the number
of photons left scales as O(logN). In section 3
of this work we will considerably improve over
this trivial corollary of [13] by proving that if the
numbers of photons that reach the detectors are
less than O(

√
N), a boson sampling experiments

becomes classically efficiently simulatable.

Most experimental boson sampling architec-
tures, and all for which interference has been
shown for more than 2 photons, are based on
a planar geometry of depth proportional to the
number of input systems, where the loss per cou-
pler in the circuit is constant, leading to a law
of exponential decay of the transmission with
the depth of the circuit. In section 3 of this
work we show that for those platforms, and plat-
forms which have similar exponential decay, bo-
son sampling experiments can be efficiently sim-
ulated classically. Therefore, we believe that
for single-photons and linear optics to remain
competitive in the race for a quantum advan-
tage demonstration new ideas are needed. More
precisely, we show that for those platforms ei-
ther the depth of the circuit (D) is large enough
(D ≥ O(logM)) that it can be simulated by ther-
mal noise with an algorithm running in polyno-
mial time, or the depth of the circuit is short
enough (D ≤ O(logM)) that a tensor network
simulation, similar in spirit to [49], runs in quasi-
polynomial time.

Not all optical architectures suffer from an ex-
ponential decay of the transmission, for example
free-space optics has a quadratic decay of trans-
mission. In section 4 we extend the validity of
the thermal noise simulation to this family of ar-
chitectures, to scattershot boson sampling and
boson sampling architectures where the photon-
counting detectors are replaced by Gaussian mea-
surements [11, 31].

In sections 5, 6 of the manuscript we provide
the detailed proofs stated in section 3 and in sec-
tion 7 we generalize the result to non-uniform
losses. Finally, we conclude in section 8.
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2 Preliminaries
In this section, we review the concept of boson
sampling, the most established model of losses
used in the quantum optics literature, and the
trace distance and its properties, needed in the
understanding of our main result in section 3. In
this work we will use the notation |n〉 = |n1〉 ⊗
|n2〉 ⊗ . . . ⊗ |nM 〉, for the M -mode Fock basis,
where n correspond to a vector ofM integers and
|ni〉 is the Fock state corresponding to ni photons
in mode i.

2.1 The ideal boson sampling model
The boson sampling proposal concerns the in-
terference of a multi-photon input state |1N 〉 =
|1〉⊗N ⊗ |0〉⊗M−N , over an M -mode linear optics
interferometer modeled as a linear transformation
of the annihilation operators

b̂i =
∑
j

Uij âj , (1)

or b̂ = U â for an equivalent compact notation.
We remark that the unitarity of U guarantees
the preservation of the total photon number and
that U is an M ×M matrix acting on the cre-
ation operators, to which corresponds a homo-
morphism ϕ(U) of dimension

(N+M−1
N

)
acting on

the M -mode Fock space [2]. At the output of
the interferometer we implement a measurement
in the photon number basis on each mode, where
the probability of obtaining an outcome z reads
|〈z|ϕ(U)|n〉|2. When z corresponds to a string of
bits, the probability outcome is connected to the
permanent of a submatrix of U , a crucial tool in
the hardness proof of boson sampling [2].

A necessary condition in the proof of the hard-
ness of boson sampling is the fact the U needs
to be a Haar random unitary. The proposal by
Reck et al. [43] showed that any general linear-
optics transformation can be achieved with a pla-
nar circuit composed of two-mode gates, using
M(M − 1)/2 gates distributed over 2M − 3 lay-
ers and M parallel modes. A recent improve-
ment in [12] remarkably brought this result to
depthM+1, which is one unit close to the lower-
bound M obtained from a simple counting argu-
ment based on the degrees of freedom of a unitary
matrix. In order to make our result as general as
possible we will consider the depth of the circuit
D as an additional free parameter.

In the initial boson sampling proposal, the
proof necessitates a polynomial relation between
the number of photons and modes (M =
O(N5 log2N)). In this work we consider the gen-
eralized relation

N = kMγ , (2)

where 0 < k < 1 and 0 < γ ≤ 1. It is easy to see
that γ = 1/2 corresponds to the bosonic birth-
day paradox ratio [4]. This ratio ensures that
for input states |n〉 composed of single photons,
the probability of two or more boson bunching at
the output is negligible (on average over the set
of Haar random unitaries and on the asymptotic
limit of a large system). The case γ = 1/6 cor-
responds to M = O(N6), which guarantees the
condition in the hardness proof in [2] to hold.

Finally, γ = 1 corresponds to the regime where
the density of photons (with k satisfying k ≤ 1
for single photons at the input) remains constant
while the size of the system increases, as opposed
to the original boson sampling proposal where it
decreases with the size of the system.

2.2 Modeling losses
A lossy linear optics circuit, as in Figure 2 a), can
be mathematically modeled by a complex matrix
A satisfying AA† ≤ I and transforming the an-
nihilation operators of M input modes â and M
environment modes ê as

âout = Aâin +
√
I −AA†ê. (3)

A has a singular value decomposition A = V µ̂W ,
where V and W are unitary matrices and µ̂ =
diag(√µ1,

√
µ2, ...,

√
µ
M

) is a diagonal matrix of
real values satisfying µi ∈ [0, 1]. The singular
value decomposition has a very natural interpre-
tation, see Figure 2 b), which is that the real
interferometer with losses characterized by A has
an equivalent circuit composed by a lossless lin-
ear optics transformation V , followed by M par-
allel set of pure-loss channels of transmission µi
each, and a final lossless linear optics transfor-
mation W . A pure-loss channel is equivalent to
a coupling interaction of transmission µi between
our physical mode i and an environmental mode,
see [17] for details. The matrix A can be effi-
ciently inferred using a simple tomographic tech-
nique that only needs two-mode interferences of
classical laser light [40].
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Figure 2: a) N single photons are sent over a lossy M mode linear optical circuit composed of D layers of two-mode
couplers. An uniform transmission per coupler of τ leads to an exponentially decay of the transmission µ = τD; b)
the real scheme in a) is indistinguishable from a circuit composed by a lossless linear optics transformation V , followed
byM parallel set of pure-loss channels of transmission µi each, and a final lossless linear optics transformation W ; c)
In the case where all the µi are equal, the virtual representation can be simplified to a layer of M identical pure-loss
channels of transmission µ followed by a virtual lossless linear optics transformation U = VW ; d) The action of a
pure-loss channel of transmission µ on a single-photon state |1〉 is equivalent to an erasure channel of probability µ,
which outputs the mixed state σ = (1− µ)|0〉〈0|+ µ|1〉〈1|.

In practice, a linear optics circuit is composed
of a network of two-mode couplers and single-
mode phase gates, where each layer of gates of
an M -mode linear optics circuit is given by a
direct product of local 2 × 2 linear transforma-
tions and complex scalars, resulting in a M ×M
complex banded matrix Ai of bandwidth 1. The
total linear optics circuit transformation results
from the multiplication of D matrices Ai, i.e.,
A = A1A2...AD.

All currently existing architecture proposals to
implement a boson sampling experiment, inte-
grated photonic circuits, fiber-optical links and
3D-waveguides, suffer from exponential decay of
the transmission with the length of the circuit.
An intuitive explanation is that every photon has
a constant probability of being lost per unit of
length of the circuit or per layer of coupling gates.
For a planar circuit composed ofD layers of gates,
where every gate has a transmission coefficient τ ,
we obtain that all the µi are equal and the trans-
mission follows an exponential decay rule µ = τD.
Because µ̂ =

√
τDI commutes with any matrix,

we can simplify the virtual representation of A to

a layer ofM identical pure-loss channels of trans-
mission µ followed by a virtual lossless linear-
optics transformation U = VW (see Figure 2 c)).

The action of a pure-loss channel of transmis-
sion µ into a single-photon state |1〉 is equivalent
to an erasure channel of probability µ, resulting
into a mixed state σ = (1 − µ)|0〉〈0| + µ|1〉〈1|,
see Figure 2 d). Therefore, boson sampling over
a realistic interferometer with uniform losses is
equivalent to an ideal boson sampler over its vir-
tual circuit U = VW where we replace each of
the N single-photons of the input state, located
in the first N modes, by the state σ, leading to a
global input state

ρin = σ⊗N ⊗ |0〉〈0|⊗(M−N),

with σ = (1− µ)|0〉〈0|+ µ|1〉〈1|. (4)

2.3 Trace distance and its properties

Before presenting our result we need to provide
some definitions and properties of the trace dis-
tance [34]. The trace distance between two quan-
tum states ρ and σ reads (here and below ‖...‖
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stands for the 1-norm)

D(ρ, σ) = 1
2Tr

(√
(ρ− σ)2

)
= 1

2 ||ρ− σ||. (5)

When both density matrices are diagonal in
the same basis, i.e., ρ =

∑
i pi|i〉〈i| and ρ =∑

i qi|i〉〈i|, the trace distance is equivalent to
the total variation distance of its corresponding
eigenvalues

D(ρ, σ) = 1
2‖p− q‖ = D(p, q). (6)

For simplicity, and following [34], we will use the
abuse of notation D(p, q) for the total variation
distance between two probability distributions.
In what follows we will use three important prop-
erties of the trace distance:

1. Its invariance under unitary transformation
D(UρU †, UσU †) = D(ρ, σ).

2. Its contractivity under a trace-preserving CP
mapM, i.e., D(M(ρ),M(σ)) ≤ D(ρ, σ).

3. Let {Ex} be a POVM, with p(x) = Tr[ρEx]
and q(x) = Tr[σEx] the probabilities of ob-
taining a measurement outcome labeled by
x. Then D(p(x), q(x)) ≤ D(ρ, σ). Where
there always exist a POVM that saturates
the bound.

Using the triangle inequality one can prove the
following lemma.

Lemma 1. The trace distance between N copies
of ρ and σ satisfies the bound

D(ρ⊗N , σ⊗N ) ≤ ND(ρ, σ). (7)

For simplicity we show the proof for n = 2,
where we make use of the triangle inequality and
‖ρ⊗ σ‖ = ‖ρ‖‖σ‖:

‖ρ⊗2 − σ⊗2‖ = ‖ρ⊗2 − σ ⊗ ρ+ σ ⊗ ρ− σ⊗2‖
≤ ‖ρ⊗2 − σ ⊗ ρ‖+ ‖σ ⊗ ρ− σ⊗2‖
= ‖(ρ− σ)⊗ ρ‖+ ‖σ ⊗ (ρ− σ)‖
= 2‖ρ− σ‖

Its generalization to n > 2 is straightforward.

3 Main result
In this section we summarize the results of this
manuscript, the detailed derivation of the lem-
mas 3, 5 in the proofs are presented in sections
5 and 6. To make our proofs more accessible,
we first restrict to the scenario of uniform loss
and later generalize the results to arbitrary cir-
cuits in Section 7, where we show that any result
that holds for uniform µ can be generalized to
µmax = maxi µi.

3.1 Lossy boson sampling as thermal noise
The key element of our proof is to approximate
the input state ρin in equation (4) with the state
ρT = σ⊗Nth ⊗ |0〉〈0|⊗(M−N), composed of N ther-
mal states in the first N modes and the remaining
M−N input modes in a vacuum state. A thermal
state is given by the Bose-Einstein distribution

σth = (1− λ)
∞∑
x=0

λx|x〉〈x|, (8)

where λ = z
1+z , with z being the average number

of photons. This allows us to proof the following
theorem.

Theorem 2. For any multi-photon interferome-
ter circuit of uniform transmission µ satisfying

µ ≤
√
ε

N
, (9)

we have D (ρin, ρT) ≤ ε.

Proof. One can use Lemma 1 to obtain the
bound D(ρT, ρin) ≤ ND(σth, σ). To have
D(ρT, ρin) ≤ ε we require that D(σth, σ) ≤
ε/N . A simple calculation gives D(σth, σ) =
1
2
(
λ2 + |µ− λ|+ |λ(1− λ)− µ|

)
. There are

three cases: (i) µ ≤ λ(1−λ), (ii) λ(1−λ) ≤ µ ≤ λ
and (iii) λ ≤ µ. All of them lead to the condi-
tion λ ≤

√
ε/N and three intervals for µ given

λ. The union of the latter reads λ − ε/N ≤
µ ≤ λ(1 − λ) + ε/N . We are looking for any
λ and the maximal possible value of µ satisfying
D(σth, σ) ≤ ε/N . Notice that the upper bound
µ ≤ λ(1 − λ) + ε/N grows with λ (for λ ≤ 1/2)
and reaches its maximal value for λmax =

√
ε/N

resulting in equation (9). Without loss of gener-
ality, we can set λ = µ.

In what follows we use the notation pin(n) and
pT(n) for the outcome probabilities resulting from
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applying a linear interferometer to ρin and ρT fol-
lowed by a photon counting measurement. Be-
cause quantum operations and measurement can
only decrease the trace distance, a corollary of
Theorem 2 is the bound D (pin(n), pT(n)) ≤ ε.
Therefore, any classical algorithm efficiently sim-
ulating a boson sampling experiment with input
state ρT will be a good ε-approximation of a
lossy boson sampling experiment satisfying equa-
tion (9). Theorem 2 formalizes, for multi-photon
interference, the commonly held belief that any
quantum supremacy experiment without access
to error correction is equivalent to random noise
after some noise threshold.

Let’s analyze the prospect of a finite size boson
sampling experiment under realistic conditions.
A simple calculation shows that for a multi-
photon interference of N photons and transmis-
sion per coupler of τ = 1− x, the depth D̃ above
which the output becomes ε-close to a thermal
state reads

D̃ =
log N

ε

2 log 1
1−x

. (10)

Setting ε = 10−6, a boson sampling experiment
with N = 100 photons, selected in order to
discard a brute-force simulation via permanent
calculations using [13], and realistic values for
the loss of x = 10−3 per coupler in the circuit
[10, 19, 21, 48], we obtain D̃ = 9.205. This
value is smaller than the birthday paradox con-
straint D = M ≥ N2 and many orders of mag-
nitude bellow the true boson sampling condi-
tion O(N5 log2N). This is sufficient to discard
a quantum supremacy experiment within the bo-
son sampling paradigm with current experimental
capabilities and theoretical know-how.

In order to satisfy the classical simulatabil-
ity condition in equation (9) the transmission µ
needs to decrease for fixed ε and increasing N .
This shows that the bound is relatively loose, and
improvements are certainly possible. Nonethe-
less, it is sufficient to prove that platforms suffer-
ing from exponential decay of transmission, such
as integrated photonics and fiber optics, can be
efficiently simulatable on a classical computer, as
shown in the next subsection.

3.2 Exponential decaying transmission

In this section we provide an efficient algorithm
for simulating multi-photon interference over ar-

chitectures with exponential decay of transmis-
sion.

3.2.1 Sufficient condition for efficient classical
simulation of multi-photon interference

The following lemma on the efficient classical sim-
ulation of photo-counting of interfering thermal
states, which was implicit in [41], is proven in
section 5,

Lemma 3. There exists a polynomial time clas-
sical algorithm that simulates the evolution of a
thermal state ρT over an ideal or lossy interfer-
ometer followed by measurement in the photon
number basis, where the output distribution is ε-
close to the ideal one and the computational run-
ning time scales as O

(
MN2

ε [logN + log(1/ε)]2
)

for transmission µ satisfying equation (9).

As detailed in section 5 the algorithm com-
bines the three following well-know facts in quan-
tum optics. Firstly, any thermal state ρT has
a Glauber-Sudarshan P -representation as a mix-
ture of an N -mode tensor product of coherent
states |α〉 =

⊗M
i=1 |αi〉 according to a Gaussian

distribution P (α) [18]. Secondly, a linear-optical
circuit characterized by a unitary matrix U trans-
forms a tensor product of coherent states α into
another tensor product of coherent states |β〉 sat-
isfying β = Uα. Thirdly, coherent states follow
a Poisson photon number distribution, which can
be sampled efficiently. Finally, we exploit the fact
that there exist efficient constellations of coher-
ent states that are arbitrarily close to the ideal
thermal state with probability distribution P (α)
[27]. The combination of Theorem 2 and Lemma
3 will allow us to simulate a lossy boson sampling
architecture composed of D layers of gates with
exponentially decaying transmission µ = τD, as
stated in the following theorem.

Theorem 4. The statistics pin(n) of N photons
interfering over an M -mode linear optics planar
circuit of depth D, transmission τ per layer of
gates, and a relation between photons and modes
given by equation (2) can be approximated with
trace distance error ε in polynomial time for D ≥
D∗, where

D∗ = 1
2 log

(
1
τ

) [γ logM + log
(
k

ε

)
+ log 2

]
.

(11)
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Proof. Any classical algorithm that generates a
distribution p̃T(n) approximating the sampling

from an ideal thermal state distribution pT(n),
where λ = µ, satisfies the bound

D(pin(n), p̃T(n)) ≤ D(pin(n), pT(n)) +D(p̃T(n), pT(n)) ≤ D(ρin, ρT) +D(p̃T(n), pT(n)), (12)

where we use the triangle inequality in the first
inequality and the fact that a measurement over
a quantum state can only decrease its trace norm
in the second. We can now apply Theorem 2 to
set the bound D(ρin, ρT) < ε/2 and Lemma 3 to
bound D(p̃T(n), pT(n)) < ε/2. Then, the classi-
cal simulability conditionD ≥ D∗ can be trivially
derived starting from the condition µ ≤

√
ε/(2N)

adapted from Theorem 4, replacing the transmis-
sion by µ = τD, taking the logarithm and replac-
ing N by eq. (2). Therefore, when the condition
D ≥ D∗ is satisfied, by properly selecting a ther-
mal state ρT satisfying λ = µ and running the al-
gorithm sketched in the discussion after Lemma
3 (see section 5 for details), p̃T(n) provides an ε-
approximation of pin(n) in polynomial time.

3.2.2 Simulation of shallow boson sampling cir-
cuits using tensor networks

In section 6 we show how one can simulate an
ideal boson sampling circuit using tensor network
techniques, which can be summarized in the fol-
lowing lemma.

Lemma 5. An ideal boson sampling circuit with
N interfering photons over anM -mode linear in-
terferometer of depth D can be simulated exactly
using tensor networks with a computational run-
ning time O(M2(N + 1)8D).

Tensor networks are a way of encoding quan-
tum states and operating with them that have
proven to be very successful in many-body
physics [35, 36, 53, 56]. Our tensor network proof
is a quantum optics version, adapted from [49], of
the well-know result that logarithmic-depth pla-
nar circuit ofM qudits can be simulated on poly-
nomial time [22]. It is easy to see that when the
depth of the circuit scales logarithmically with
the number of modes M and N satisfies equa-
tion (2), our algorithm runs in quasipolynomial
time. This is due to the unbounded nature of the
Hilbert space of optical modes. In order to have
an exact simulation we need to fix the local di-
mension on each mode to be as large as the total

number of photons in the circuit, which results
into a quasipolynomial-time algorithm.

3.2.3 Efficient simulation of architectures with ex-
ponential decaying transmission

Now, combining theorem 4 and lemma 5 we can
classically simulate any multi-photon interference
architecture that has an exponential decaying
transmission, as stated by the following theorem.

Theorem 6. The statistics of N photons inter-
fering over an M -mode planar linear-optical cir-
cuit of depth D, transmission τ per layer of gates,
and a relation between photons and modes given
by equation (2) can be approximated with trace
distance error ε in polynomial time for D ≥ D∗

and in quasi-polynomial time for D ≤ D∗, where
D∗ is defined in equation (11).

Proof. The classical simulability under condi-
tion D ≥ D∗ is a direct corollary of Theo-
rem 4. For a uniform losses circuit satisfying
D ≤ D∗ we exploit the equivalence between a
lossy multi-photon interference and an ideal in-
terference over the circuit U with input state
ρin = σN ⊗ |0〉〈0|M−N , as explained in subsec-
tion 2.2. We model the initial state ρin by start-
ing with N single-photons and keeping each one
with probability µ = τD, while the rest are trans-
formed to vacuum inputs. We then proceed with
the tensor network simulation of U using lemma
5, where we just need to change the input tensor
accordingly to the random sequence of (surviv-
ing) input single-photons. This leads to a quasi-
polynomial time algorithm with a running time

O
(
M

γ2

2 log 1
ε

logM
)
.

4 Additional results

In this section we extend the previous results
to architectures suffering from algebraic decay of
transmission and to other quantum optics alter-
natives to boson sampling.
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4.1 Algebraic decay of transmission

Not all optical architectures suffer from an ex-
ponential decay of the transmission, for example
free-space optics suffers from a decay of trans-
mission scaling as 1/D2. Suppose that a given
architecture follows the following algebraic decay
of losses

µ =
(

1 + D

d

)−β
, (13)

where d is a length scale that together with
the parameter β model the algebraic decrease of
transmission. Then theorem 4 can be adapted to
the following weaker form.

Corollary 7. The statistics of N photons in-
terfering over an M -mode linear optics planar
circuit of depth D, with algebraic losses given
by eq. (13), and a relation between photons and
modes given by eq. (2) can be approximated with
trace distance error ε in polynomial time when
D ≥ D∗, where

D∗ = d

[(2k
ε

) 1
2β
M

γ
2β − 1

]
. (14)

It is not difficult to check that when the con-
dition γ/β < 2 is satisfied, there always exist an
M∗ such that the condition D∗ ≤ M − 1 is sat-
isfied for all M ≥ M∗. This shows that any bo-
son sampling experiment, which needs a depth
D = M , on an architecture causing algebraic de-
cay of optical transmission satisfying γ/β < 2 will
be classically simulatable by an approximation by
thermal noise sampling for all M ≥M∗.

4.2 Generalization to alternative boson sam-
pling proposals

Scattershot boson sampling was presented in [30]
to circumvent the main problem of the non-
deterministic nature of state-of-the-art photon
sources, where the probability of firing N photon
at the same time decays exponentially. The pro-
tocol starts by generating M two-mode squeezed
vacuum states,

|ψ〉 =
√

1− λ
∞∑
n=0

λn/2|n〉|n〉, (15)

where λ is the same parameter as in the defini-
tion of a thermal state, as a two-mode squeezed
vacuum state is its purification. Then we send

half of the two-mode squeezed vacuum states
through a boson sampling circuit, while the re-
maining modes are used to herald the presence of
photons. By properly tuning the squeezing pa-
rameter λ one can guarantee that most of the
heralded sequences are collision-free, i.e., satisfy
the birthday-paradox condition. The price to
pay is that the modes where the photons enter
the circuit are completely randomized, which is
not a problem for boson sampling as the circuit
is anyway randomly generated according to the
Haar random distribution. Because right after
the heralding process the setup is strictly equiva-
lent to a traditional boson sampling device, up
to the randomization of the modes where the
single-photons enter the interferometer, both of
our simulation algorithms (thermal state sam-
pling and tensor network simulation) can be triv-
ially adapted. We only need to randomly gener-
ate valid heralding sequences following the distri-
bution given by eq. (15) and depending on the ob-
tained heralded value we run the boson sampling
simulations presented in subsection 3.2.1 and de-
tailed in section 5. The only difference is that
now the input photons enter the interferometer
on a random selection of N input modes.

More recently, a variant of boson sampling,
where photon detectors are replaced by a Gaus-
sian measurement, has been proposed [11, 31].
Because quantum operations and any measure-
ment can only decrease the trace distance, the
outcome statistics of this alternative proposals
will also remain ε-close. The evolved thermal
state being Gaussian, we can extend our result
to this scenario by using well-know techniques of
simulating Gaussian measurement over Gaussian
states [32, 52].

5 Proof of Lemma 3

An idealized algorithm for simulating the photo-
counting of a set of interfering thermal states
is composed of three steps. Firstly, any ther-
mal states ρT has a Glauber-Sudarshan P -
representation as a mixture of N -mode coherent
states |α〉 ≡ |α1, ..., αN 〉 =

⊗N
i=1 |αi〉 according

to a Gaussian distribution

ρT =
∫
CN

dαp(α)|α〉〈α| ⊗ |0〉〈0|M−N , (16)
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where

p(α) =
N∏
i=1

[
d2αi
πz

exp
(
−|αi|

2

z

)]
. (17)

Secondly, a linear-optical circuit characterized by
a unitary matrix U transforms a tensor product
of coherent states

⊗M
i=1 |αi〉, into another tensor

product of coherent states
⊗M
i=1 |βi〉 with ampli-

tudes

βi =
M∑
j=1

Uijαj . (18)

In other words, coherent states remain in a ten-
sor product form while evolved through a linear
optical circuit. Thirdly, coherent states follow a
Poisson photon number distribution

P (ni, βi) = e−|βi|
2 |βi|2ni
ni!

. (19)

Therefore, a concatenation of three stochastic
processes simulates the photo-counting of a set
of interfering thermal states. The first process
generates a complex vector α following the prob-
ability distribution p(α). The second one applies
the map U to the vector α generating the output
β = Uα. The third process P generates an M -
dimensional vector n from β by sampling from
the M -dimensional Poisson distribution p(n,β),
where averaging over β gives

pT(n) =
∫
dβp(β)p(n,β) (20)

This algorithm is an idealized one, as it assumes
access to oracles that sample exactly from Gaus-
sian and Poisson distributions.

In order to build a realistic algorithm we define
a new three step process, where the sampling ora-
cles are replaced by efficient approximation algo-
rithms. The first step, detailed in subsection 5.2,
consist of sampling from a N -mode constellation
CN,λ,m2(α) composed of m2N coherent states of
distribution p̃(α), satisfying

m2N∑
i=1

p̃(αi)|αi〉〈αi| = ρ̃T, (21)

which efficiently approximates the N -mode ther-
mal state ρT [27]. The N -mode constellation is
composed of N identical single-mode constella-
tions Cλ,m2(α) of size m2 providing each a good
approximation of the single-mode thermal state
σth. The second step Ũ implements an approxi-
mation of matrix multiplication, discussed in sub-
section 5.3, mapping α to β, transforming the
constellation CN,λ,m2(α) into CN,λ,m2(β). Finally
the third step P̃ generates p̃(n,β), an approxima-
tion of an M -dimensional Poisson distributions
(19) satisfying

m2N∑
j

p̃(n,βj) = p̃T (n). (22)

To approximate the Poisson distribution we use
a scalable number of Bernouilli trials, as detailed
in subsection 5.4 following [5].

5.1 Error analysis
We want to show that the trace distance between
the ideal and approximate algorithms, above de-
scribed, satisfies D(pT(n), p̃T(n) ≤ ε while the
algorithm remaining polynomial-time. It is easy
to see from the definition of P, P̃, U , Ũ that

‖pT(n)− p̃T(n)‖ = ‖P ◦ U (ρT)− P̃ ◦ Ũ (ρ̃T) ‖.
(23)

One can rewrite it as the following norm of a
linear combination of terms,

‖pT(n)− p̃T(n)‖ = ‖P ◦U (ρT)−P ◦U (ρ̃T) +P ◦U (ρ̃T)−P ◦ Ũ (ρ̃T) +P ◦ Ũ (ρ̃T)−P̃ ◦ Ũ (ρ̃T) ‖ (24)

which using the triangle inequality and the fact that a trace preserving map, such as U ,P, Ũ , P̃ can
only decrease the trace distance, we obtain the upper-bound

‖pT(n)− p̃T(n)‖ ≤ ‖ρT − ρ̃T‖+ ‖U (ρ̃T)− Ũ (ρ̃T) ‖+ ‖P ◦ Ũ (ρ̃T)− P̃ ◦ Ũ (ρ̃T) ‖, (25)
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that can be simplified using the definition of the constellation CN,λ,m(α) and CN,λ,m(β), resulting in

‖pT(n)− p̃T(n)‖ ≤ ‖ρT− ρ̃T‖+max
C(α)
‖U (|α〉〈α|)−Ũ (|α〉〈α|) ‖+max

C(β)
‖P (|β〉〈β|)−P̃ (|β〉〈β|) ‖, (26)

where C(β) = U (C(α)). In what follows we will
show how one can build efficient algorithm for
each step such that the last three terms on the
r.h.s. of (26) are bounded by 2ε/3, leading to
D(pT(n), p̃T(n)) ≤ ε.

5.2 Efficient coherent states constellations
We follow the derivation in [27] to bound the trace
norm between a single-mode thermal state σth
and the single-mode coherent state constellation

Cλ,m(α) = {Pλ,m(α), |α〉〈α|}α∈C, (27)

which needs to have at least the same first and
second moments. The constellation is described
by the P -distribution Pλ,m(α) supported on m2

points, such that

V

2 Pλ,m

√V

2 (x+ iy)

 = PXm(x)PXm(y), (28)

where PXm(x) is one constellations of the nor-
mal distribution X ∼ N(0, 1) [57]. In terms of
random variables, αm =

√
V
2 (Xm + iX ′m), where

Xm and X ′m are independent realizations of the
given constellation. The factor

√
V ensures that

the resulting P function has the same variance

V = λ

1− λ (29)

as the one corresponding to the thermal state σth,
where the factor 1/

√
2 takes care of the conver-

sion from two real variables to one complex vari-
able. As shown in [50] the χ2-divergence bounds
the trace norm as

||ρ− σ||2 ≤ χ2(ρ, σ) = Tr
[(
ρσ−1/2

)2
]
. (30)

As proven in the Appendix of [27], the quan-
tum χ2-divergence χ2(σth, Cλ,m(α)) satisfies the
upper-bound

1 +χ2(σth, Cλ,m(α)) = (1 +χ2(PXm , PX))2 (31)

The Gauss-Hermite constellation Xm of size
m of the normal distribution X ∼ N(0, 1) is

given by the m roots of the mth Hermite poly-
nomial, with weight PXm selected to provide ex-
act integration with respect to PXm for all poly-
nomials up to degree 2m − 1 [57]. Then one
can relate the χ2-divergence between the nor-
mal distribution and the Gauss-Hermite constel-
lation χ2(PXm , PX) to the moments of the Her-
mite polynomials of Xm [27, 57]

1+χ2(PXm , PX) =
∞∑
k=0

1
k!

(
s

1 + s

)k
|E [Hk (Xm)] |2

(32)
where

s = V√
V (V + 1)− V

. (33)

Because E [Hk (Xm)] = 0 for odd k and
by definition of the Gauss-Hermite quadrature
E [Hk (Xm)] = 0 for all k ≤ 2m − 1, together
with using equation (33) and definition (29) to
obtain the equality

s

1 + s
=
√
λ, (34)

we reach the simplification

χ2(PXm , PX) =
∞∑
k≥m

λk

(2k)! |E [H2k (Xm)] |2. (35)

Finally, following the proof of Theorem 8 in [57]
we can show

χ2(PXm , PX) ≤ 2κ2
∞∑
k≥m

λk = 2κ2 λm

1− λ, (36)

where κ is a constant such that 2κ2 ≈ 2.36. This
provides us with an upper-bound to the trace dis-
tance between the single-mode constellation and
the single-mode thermal state

D (σth, Cλ,m(α)) ≤ 1
2

([
1 + 2κ2 λm

1− λ

]2
− 1

)

≤ 3κ2 λm

1− λ. (37)

Using Lemma 1 one can trivially obtain an upper-
bound between the N -mode constellation and
thermal state from its single-mode version

D (ρT, CN,λ,m(α)) ≤ 3κ2N
λm

1− λ. (38)
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5.3 Matrix multiplication
The transformation of β = Uα can be approx-
imated using standard numerical linear algebra
within error ε in O(MN) operations [24]. It is

then easy, using the fidelity upper-bound of the
trace norm, the well-know exponential decrease
of the overlap between two coherent states, and
the inequality 1− e−x ≤ x to derive the bound

||U (|α〉〈α|)− Ũ (|α〉〈α|) || ≤ 2
√

1− F
(
U (|α〉〈α|) , Ũ (|α〉〈α|)

)
≤ 2

√
1− e−|β̃−β|2 ≤ 2|β̃ − β| ≤ 2ε,

(39)

which shows that the error on the coherent sates
is upper bounded by the error of the matrix mul-
tiplication, which can be made arbitrary small
with a polynomial-time overhead.

5.4 Approximate Poisson sampling with
Bernouilli trials
Starting from an M -dimensional vector β the
map P(β) outputs samples n from M Poisson
distributions, i.e., for each βl with l = 1, . . . ,M
the Poisson distributions P (nl, |βl|2) (19) is sam-
pled via independent Bernoulli trials. To deter-
mine the number of Bernoulli trials t to achieve a
given error we can use the trace distance bound
[5]

1
2

∞∑
k=0

∣∣∣(t
k

)
pkB(1− pB)t−k − P (k, x)

∣∣∣ ≤ (1− e−x)x
t
≤ x2

t
(40)

between the probability distribution of the sum of
t independent Bernoulli trials, St = ξ1 + . . .+ ξt,
with pB(ξ = 1) = x/t, pB(ξ = 0) = 1 − x/t
and the Poisson distribution P (n, x). This im-
plies that the error of the M -dimensional output
n will be bounded as

D
(
P (|β〉〈β|) , P̃ (|β〉〈β|)

)
≤ M

t
max
β
|β|4.

(41)
Because the unitary matrix U preserves the

norm of a vector, it is easy to show

max
β
|β| ≤ N max |α| ≤ N

√
2m, (42)

where we used the fact that α results from
N identical single-mode constellations of coherent
states and Krasikov’s upper bound on the roots
of Hermite polynomials [26], which define the lo-
cation of the coherent states of the constellation.
Therefore, the number of necessary Bernoulli tri-
als t for simulation of a Poisson distribution with
a trace distance error 2ε/3 reads

t = 6MN2

ε
m2. (43)

5.5 Algorithm scaling

The algorithm is composed of three steps. First,
the random generation of a N -mode coherent
state, a task with a computational cost scaling
as O(N). Secondly, the matrix multiplication
β = Uα, with a computational cost scaling as
O(MN). Finally, we need to approximate a Pois-
son distribution by sampling from t Bernoulli tri-
als, as specified in equation (43). Using equation
(38) and that λ = µ we obtain

m = logN + log(1/ε) + log(1/(1− µ)) + 2 log(3κ)
log(1/µ) .

(44)
It is easy to see that a constant µ guar-
antees a computational cost scaling as
O
(
MN2

ε [logN + log(1/ε)]2
)

in terms of the
number of input photons N , the transmission
M and the quality of the approximation ε.
Observe that by theorem 2, µ ≤

√
ε/N , hence

the right hand side on equation (44) is regular
(for ε/N ≤ 1− δ for all δ > 0).
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6 Proof of Lemma 5
A quantum state of M bosonic modes with at
most N total number of photons reads

|ψ〉 =
∑

{n:|n|=N}
Cn1,n2,...,nM |n1, n2, ..., nM 〉. (45)

The memory and computational cost of a
brute-force simulation is associated with the
number of degrees of freedom of the coefficient
Cn1,n2,...,nM , which correspond to the size of the
Hilbert space. In our case it is given by the bi-
nomial

(N+M−1
N

)
that grows exponentially if both

N and M increase proportionally to each other.
The idea behind tensor networks is to interpret
Cn1,n2,...,nM as a big tensor with M free indices.
A tensor that can be recovered from the contrac-
tion of a network of tensors of smaller size, where
the virtual degrees of freedom contract each other
leaving M free parameters corresponding to the
physical indices ni. This provides a very intu-
itive representation of quantum states and al-
lows for a very efficient encoding and manipu-
lation when the states have a high degree of lo-
cality [35, 36, 53, 56].

6.1 Matrix product states
In our case we are interested in the evolution of
a particular example of a tensor network called

matrix product states,

|ψ〉 =
d1∑

n1=0

d2∑
n2=0

...
dM∑

nM=0
B[1]
n1B

[2]
n2 ...B

[M ]
nM
|n1, ..., nM 〉,

(46)
where B[1]

n1 is a transposed vector of dimension
χ̃1, B

[M ]
nM is a vector of dimension χ̃M , and B

[i]
ni

for 1 < i < M is a matrix of dimension χ̃i× χ̃i+1.
The physical indexes ni take values {0, 1, ..., d}.

As shown in Figure 3 (a), one can associate to
each matrix product state a 1-dimensional graph
where each vertex is associated to a three index
tensor B[i]

ni,α,β
(Figure 3 (b)) and the edges deter-

mine the contraction rule of the tensor indices.

6.1.1 Canonical form

It is well known that any bipartite quantum state
can be rewritten as

|ψ〉 =
d1∑
i=0

d2∑
j=0

cij |ij〉 =
min d1,d2∑
α=0

λα|ϕα〉|ψα〉, (47)

where the Schmidt coefficients λα result
from the singular value decomposition
cij =

∑
α Ui,αλαV j,α. Every matrix product

state can be also transformed into a canonical
form

|ψ〉 =
∑

n1,n2,...,nM

(
Γ[1]
n1λ

[1]Γ[2]
n2λ

[2] . . .Γ[N ]
nM

)
|n1, n2, . . . , nM 〉 (48)

by iteratively applying the singular value decom-
position [38, 54], with its graph representation
shown in Figure 3 (c). The matrices λ[i] are di-
agonal and contain the Schmidt coefficients cor-
responding to the bipartition of modes (1, ..., i)
versus (i + 1, ..,M). The Schmidt rank of each
link reads χk, and χ = maxk{χk} is called the
bond dimension. The total number of parame-
ters and thus the storage cost for such a matrix
product state scales as O(M(d+ 1)χ2).

6.2 Simulating ideal linear optics circuits

A linear optics circuit is composed of one-mode
phase gates and two-mode couplers implement-
ing an interaction between two adjacent modes.

In what follows we first explain how to update a
matrix product state that goes under the evolu-
tion of linear optics gates and later discuss how
to sample from the final output state.

6.2.1 One mode gates (phase rotation)

As shown in Figure 4, a single-mode gate acting
on mode i is modeled by a matrix G

[i]
n′i,ni

that
transform the input physical indices ni to the
output physical indices n′i. The evolution corre-
sponds to the contraction of the physical indices
ni of Γ[i]

α,ni,β
and G[i]

n′i,ni
as

Γ̃′iα,β,n′i =
∑
ni

G
[i]
(n′i),(ni)

Γ[i]
(ni),(α,β). (49)
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Figure 3: (a) Graphical representation of a quantum state |ψ〉 corresponding to a matrix product state of four
tensors, as defined in Eq. (46). (b) B[i]

ni,α,β
is a tensor of rank three: represented by a vertex i with three edges,

one corresponding to the physical index ni and the two other to the virtual indexes α, and β. (c) All matrix product
states can be transformed into a canonical form where a diagonal matrix λ of Schmidt coefficients is assigned to
every edge between two vertices of (a).

↵

�

nini
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G
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↵

�
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i� �̃

Figure 4: a)A single-mode phase-rotation acting on mode i is modeled by a matrix (tensor) G[i]
n′

i
,ni

that transform
the input physical indexes ni to the output physical indexes n′

i; b) The tensor Γ[i] of virtual indexes α, β and physical
index ni is transformed to the tensor Γ̃[i] by implementing a tensor contraction between the tensor Γ[i] and the
phase-rotation G[i]

.

A phase rotation θ has a matrix G[i] that is diago-
nal with coefficients G[i] = exp(iθni). Therefore,
the computational cost of the update of a single
local gate scales as O

(
(d+ 1)χ2). Notice that

applying a single-mode gate will not change the
Schmidt coefficients of the matrix product state,
as it acts only on the physical indexes of one ver-

tex of the graph.

6.2.2 Two-mode couplers

A two-mode coupler B[k,k+1] acting on modes k
and k + 1 is modeled by a 4 legs tensor, i.e., a
matrix product operator, with physical indexes
nk and nk+1 for the input and n′k and n′k+1 for
the output,

B[k,k+1] =
∑

nk,nk+1,n
′
k
,n′
k+1

C
n′k,n

′
k+1

nk,nk+1 |n′k, n′k+1〉〈nk, nk+1|, (50)

where the coefficients C
n′k,n

′
k+1

nk,nk+1 are the well-known input-output amplitudes of a beamsplitter [9, 23]
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Figure 5: a) The action of a two-mode coupler on modes k and k + 1 of a matrix product state written on its
canonical form is first obtained by doing a singular-value decomposition of the matrix product operator of the
coupler; b) Secondly, we contract the tensors Γ[k] and X [k] of mode k and Γ[k+1] and X [k+1] of mode k+ 1, giving
Γ̃[k] and Γ̃[k+1] respectively; c) Finally, we relabel the two singular values λ and γ into a new label λ̃ of the resulting
matrix product state.

(see also equation (3.9) in [2]).
In [49] an algorithm was constructed based on

directly applying the unitary B[k,k+1] to the ma-
trix product state followed by a singular-value de-
composition to rebuild the canonical form of the
output state, reaching a computational cost scal-
ing as O(χ3d3). In what follows we present an
alternative algorithm that provides a better scal-
ing when the bond dimension χ is higher than the
physical dimension d, which is generally the case
in most realistic simulations.

As shown in Figure 5 a), in order to model the
evolution of modes k and k+1 under a two-mode
coupler operation, we first implement a singular-
value decomposition of the matrix product oper-
ator B[k,k+1] with respect to the separation be-
tween (nk, n′k) and (nk+1, n

′
k+1) indexes, i.e.,

B
[k,k+1]
(nk,n′k),(nk+1,n

′
k+1) =

χBS∑
γ=1

X
[k]
nk,n

′
k
,γσ

[k]
γ X

[k+1]
nk+1,n

′
k+1,γ

(51)
where χBS is the Schmidt rank of the ma-
trix product operator. The Schmidt rank of a
singular-value decomposition of a matrix being
upper-bounded by the largest of the two local di-
mensions provides the bound

χBS ≤ (d+ 1)2, (52)

where the running time of the matrix product
operator decomposition scales as O

(
(d+ 1)6).

As shown in Figure 5 b), the next step is to
contract the tensors Γ[k] and X [k] of mode k and
Γ[k+1] and X [k+1] of mode k + 1 in order to gen-
erate the tensors Γ̃[k] and Γ̃[k+1] of the state re-
sulting after the beamsplitter transformation.

The running time of the contraction leading to
the tensor Γ̃[k] scales as χk−1χkχBS(d+1)2 where
for Γ̃[k+1] scales as χk+1χkχBS(d+1)2 which leads
to a scaling of the contraction running time

TC = O
(
χ2χBS(d+ 1)2

)
≤ O

(
χ2(d+ 1)4

)
.

(53)
We remark that, as shown in Figure 5 c), the

tensors Γ̃[k] and Γ̃[k+1] are connected by two pairs
of singular values, χk from the initial state and
χBS from the beamsplitter matrix product opera-
tor, which can be merged into a single χ̃ satisfying
χ̃k = χkχBS , which combined with equation (52)
provides the bound

χ̃ ≤ χ(d+ 1)2, (54)

which is the equivalent of Lemma 4 (i) in [22].

6.2.3 Circuit simulation

The ideal boson sampling input state corre-
sponds to a trivial matrix product state of
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bond dimension χ = 1, composed of N tensors
Γ[i]

1 = δni,1δαi−1,0δαi,0 encoding single-photon in-
puts and M − N tensors Γ[i]

0 = δni,0δαi−1,0δαi,0
encoding vacuum inputs. For every layer of cou-
plers we apply in parallel the matrix product up-
date detailed in subsections 6.2.1 and 6.2.2. The
bond dimension scales with the depth of the cir-
cuitD as O

(
(d+ 1)2D

)
, the storage space for the

tensors as O
(
M(d+ 1)4D+1

)
, and the computa-

tional cost of the contraction of the matrix prod-
uct state scales as O

(
M(d+ 1)4(D+1)

)
, where

the leading order corresponds to the contractions
of the last layer of gates.

6.2.4 Sampling from a matrix product state

Once the matrix product state resulting from D
layers of gates has been calculated, it is well
known that one can exploit the chain rule

p(n1, . . . , nM ) = p(nM |nM−1, . . . , n1) . . . p(n1)
(55)

to generates samples of p(n). For completeness,
we reproduce the explanation in [29] bellow.

First calculate for each of the d+1 outcomes n1
the probability Tr [|ψ〉〈ψ||n1〉〈n1| ⊗ I2...M ], where
|n1〉〈n1| is the projector onto the photon num-
ber state n1 of mode 1 and I2...M is the iden-
tity operator on modes 2 to M . This is done by
contraction of the matrix product state with it-
self, interleaved with a matrix product operator
representing the measurement projector |n1〉〈n1|.
Then we randomly select one of the d+ 1 poten-
tial outcomes n1 and update our state by gener-
ating |ψñ1〉 := 〈ñ1|ψ〉, where the bra 〈ñ1| acts
only on mode 1. The result of this contrac-
tion is a new, unnormalized matrix product state
|ψñ1〉 of size N − 1. Note that this new matrix
product state satisfies the condition 〈ψñ1 |ψñ1〉 =
p(ñ1). The second step now uses the state |ψñ1〉.
Firstly, we calculate the d+ 1 outcome probabil-
ities p(n2, ñ1) := 〈ψñ1 | (|n2〉〈n2| ⊗ I3,...,N ) |ψñ1〉
and randomly select a ñ2 from the probability
distribution p(n2|ñ1) := p(n2, ñ1)/p(ñ1). Sec-
ondly, we generate a new, unnormalized ma-
trix product state |ψñ1,ñ2〉 := 〈ñ2|ψñ1〉 of size
N − 2. Continuing this procedure for the re-
maining M − 3 output modes, we end up with
one sample drawn according to the probabil-
ity distribution p(n1, n2, . . . , nN ). The high-
est computational cost corresponds to the con-

traction leading to p(n1, n2, . . . , nN ). A trivial
contraction algorithm provides a running time
of O

(
Mχ4(d+ 1)2), which for matrix product

state resulting from D layers of couplers becomes
O(M2(d+ 1)8D+2).

6.3 Simulating ideal logarithmic depth circuits

It is important to notice that the bond dimen-
sion scales exponentially with the depth of the
circuit. If d was a constant, such as in spin sys-
tems simulations, a shallow circuit satisfying a
logarithmic depth constraint as in eq. (11) would
lead to a polynomial time algorithm. In a ten-
sor network simulation of quantum optics, the
potential bunching of photons, which can all po-
tentially accumulate in a given mode, makes the
simulation harder. In order to obtain an exact
simulation of the evolution and the sampling of
N input single photons over a circuit of depth D
we fixed the physical dimension over the whole
evolution to d = N , the total number of photons.
Because N scales with the number of modes M ,
see eq. (2), the computational cost of contraction,
storage and sampling becomes quasipolynomial
in the size of the system.

7 Generalization to non-uniform losses

In subsection 2.2 we have shown that a lossy lin-
ear optics interferometer is mathematically mod-
eled by a complex linear transformation A with
singular value decomposition A = V µ̂W . As
shown in Figure 2, this is equivalent to a circuit
composed by a lossless linear optics transforma-
tion V , followed by M parallel set of different
pure-loss channels of transmission µi, and a final
lossless linear optics transformation W .

As shown in Figure 6, each of the M parallel
pure-loss channels of transmission µi can be de-
composed into a concatenation a pure-loss chan-
nels of transmission µ = max µi followed by one
of transmission µ̃i = µi/µ. Because M paral-
lel pure-loss channels of transmission µ commute
with the unitary V , we obtain a scheme whereM
parallel set of pure-loss channels of transmission
µ are followed by the ideal circuit V , M paral-
lel different pure-loss channels (µ̃i) and a final
ideal circuit W . The state ρin now results from
applying M parallel set of pure-loss channels of
transmission µ = maxi µi and the thermal state
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Figure 6: A non-uniform lossy interferometer is equiva-
lent to M parallel set of pure-loss channels of transmis-
sion µ = max µi (where we have chosen µ = µ1 without
loss of generality) followed by the losseless circuit V , M
parallel set of pure-loss channels (µ̃i) and a final losseless
circuit W .

ρT is chosen such that λ = µ, in the same way
we did in subsection 3. The only difference is
that now the set of operations after the pure-loss
channels of transmission µ is not longer a lossless
interferometer U but a M -mode quantum chan-
nel L resulting from concatenating V , M parallel
pure-loss channels (µ̃i) and W .

7.1 Generalizing Theorem 2

Because applying a quantum operation L can
only make the trace-distance decrease, similarly
as for a measurement, it is trivial to see that one
can generalize Theorem 2 by replacing the uni-
form losses µ by µ = max µi.

7.2 Generalizing lemma 3

It is a well-known fact in quantum optics that the
action of a pure loss channel of transmission µi
on a coherent state |α〉 outputs a weaker coher-
ent state |µiα〉. Therefore, the evolution of an
input multimode coherent state |α〉 can be easily
computed, by implementing the matrix multipli-
cation β = Aα. Once the output coherent states
have been determined, the sampling from their
respective Poisson distributions proceeds as be-
fore.

7.3 Generalizing lemma 5

The adaptation of the tensor network simulation
is slightly more involved. Let’s use the notation
Ai,j for the coupler acting on modes i and i+1 at
the layer of couplers j. Every Ai,j has a decompo-
sition into a unitary Vi,j followed by two indepen-
dent pure-loss channels and a final unitary Wi,j .

Because every pure-loss channel can be seen as a
lossless coupling interaction with an environmen-
tal mode, it is easy to see that a circuit with losses
can be transformed into an ideal lossless circuit
by doubling the number of couplers and adding
two ancillary modes per coupler with losses. We
can then place all the ancillary modes interacting
with mode i between input modes i and i+1, i.e.,
D of them bellow each input mode for a circuit of
depthD. For a lossy circuit of depthD there is at
most 3D lossless gates acting on each mode with
a range of at most D. As detailed in [22], one
can transform a D range gate into 2D nearest-
neighbor gates. Therefore, our initial circuit with
losses of depth D = M becomes a lossless circuit
withM2 modes and 6M2 nearest-neighbor gates.
This leads to a less favorable scaling of the com-
putational cost of contraction, storage and sam-
pling, but which remains quasipolynomial in M .
This last algorithm is certainly not optimal and
we are convinced that more elaborate choices can
certainly improve the simulation of multi-photon
interference with non-uniform losses.

8 Conclusion

The vast majority of currently proposed boson
sampling architectures suffer from exponential
decay of the transmission with the length of the
circuit. We have shown that multi-photon inter-
ference over an M modes interferometer of depth
D can be efficiently simulated classically. More
precisely, we have show that either the depth of
the circuit is large enough (D ≥ O(logM)) that
it can be simulated by thermal noise with an al-
gorithm running in polynomial time, or the depth
of the circuit is shallow enough (D ≤ O(logM))
that a tensor network simulation runs in quasi-
polynomial time.

We also showed that for even very optimistic
experimental parameters, a quantum supremacy
experiment using the current boson sampling
hardness proof is out of reach. We believe that
our result suggests that in order to implement
a quantum advantage experiment with single-
photons and linear optics we need novel theoret-
ical ideas or radically new technological develop-
ments. One possibility would be to shift to plat-
forms with very low algebraic transmission where
our result would not be applicable. Another op-
tion would be prove the hardness of novel boson
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sampling architectures beyond the planar circuit
architecture. A promising route would be to re-
duce the depth of the circuit to the shallow regime
while maintaining the complexity by moving to a
lattice structure. A potential candidate would be
an adaptation to quantum optics of the recent
proposal of quenching a spin lattice [6].

We discussed that the potential bunching of
photons makes the tensor network simulation of
quantum optical systems more involved than its
finite spin counterparts. One could potentially re-
store the polynomial scaling of logarithmic depth
circuits observed for finite systems by designing
an ε-approximate algorithm that truncates every
mode to a finite size. To our knowledge, this is a
non-trivial result that is certainly worth pursuing
in future research.

One of the motivations of our work was to show
that simulating boson sampling with imperfec-
tions is indeed easier than ideal boson sampling.
We achieved this goal for a restricted regime of
losses where the system becomes classically sim-
ulatable. We conjecture that there should ex-
ist a family of algorithms that optimally interpo-
late between the Clifford and Clifford algorithm
for ideal devices and fully efficient algorithms for
noisy devices. This work is only a first step in
this direction and we believe that further results
will improve even further the classical simulation
of imperfect boson sampling devices.

An interesting open question is whether our
proof can be adapted to other technological plat-
forms candidates to a quantum advantage test.

It has been recently proposed to use post-
selection to improve boson sampling rates while
maintaining its hardness [55]. The proposal,
inspired by the fact that the hardness of bo-
son sampling is preserved when only a constant
number of photons is lost [3], proposes to post-
select outcome events with a constant number of
lost photons. If the probability of a successful
post-selection decreases exponentially with the
increasing size of the system, it was argued that
it could be a useful tool for experiment of the
limited size needed for a practical quantum ad-
vantage demonstrations. If the proof presented
in this manuscript can not be used to discard
this novel approach to boson sampling, a recent
work by the same authors [44] imposes strong
constrains on its viability.

After the completion of this article we learned

about Ref. [37] that obtains a similar result to our
Theorem 2 and its generalization to non-uniform
losses using very different techniques.
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