49,307 research outputs found
Enhanced toluene removal using granular activated carbon and a yeast strain candida tropicalis in bubble-column bioreactors
The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in abubble-column bioreactor, and the tolueneremoval efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The tolueneremoval efficiency was enhanced when granularactivatedcarbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated tolueneremoval efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m3/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m3/h at atoluene loading of 291 g/m3/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high tolueneremoval capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene
PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS
Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled
Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system
Evolution of the mass function (MF) and radial distribution (RD) of the
Galactic globular cluster (GC) system is calculated using an advanced and a
realistic Fokker-Planck (FP) model that considers dynamical friction,
disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP
calculations with different initial cluster conditions, and then search a
wide-parameter space for the best-fitting initial GC MF and RD that evolves
into the observed present-day Galactic GC MF and RD. By allowing both MF and RD
of the initial GC system to vary, which is attempted for the first time in the
present Letter, we find that our best-fitting models have a higher peak mass
for a lognormal initial MF and a higher cut-off mass for a power-law initial MF
than previous estimates, but our initial total masses in GCs, M_{T,i} =
1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings
include that our best-fitting lognormal MF shifts downward by 0.35 dex during
the period of 13 Gyr, and that our power-law initial MF models well-fit the
observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We
also find that our results are insensitive to the initial distribution of orbit
eccentricity and inclination, but are rather sensitive to the initial
concentration of the clusters and to how the initial tidal radius is defined.
If the clusters are assumed to be formed at the apocentre while filling the
tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to
~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
Walls in supersymmetric massive nonlinear sigma model on complex quadric surface
The Bogomol'nyi-Prasad-Sommerfield (BPS) multiwall solutions are constructed
in a massive Kahler nonlinear sigma model on the complex quadric surface,
Q^N=SO(N+2)/[SO(N)\times SO(2)] in 3-dimensional space-time. The theory has a
non-trivial scalar potential generated by the Scherk-Schwarz dimensional
reduction from the massless nonlinear sigma model on Q^N in 4-dimensional
space-time and it gives rise to 2[N/2+1] discrete vacua. The BPS wall solutions
connecting these vacua are obtained based on the moduli matrix approach. It is
also shown that the moduli space of the BPS wall solutions is the complex
quadric surface Q^N.Comment: 42 pages, 30 figures, typos corrected, version to appear in PR
Numerical simulation of super-square patterns in Faraday waves
We report the first simulations of the Faraday instability using the full
three-dimensional Navier-Stokes equations in domains much larger than the
characteristic wavelength of the pattern. We use a massively parallel code
based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of
arbitrarily deformable phase interfaces. Simulations performed in rectangular
and cylindrical domains yield complex patterns. In particular, a
superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett.
6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The
pattern consists of the superposition of two square superlattices. We
conjecture that such patterns are widespread if the square container is large
compared to the critical wavelength. In the cylinder, pentagonal cells near the
outer wall allow a square-wave pattern to be accommodated in the center
- …
