53 research outputs found

    Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle.

    Get PDF
    Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium

    The genetics of an early Neolithic pastoralist from the Zagros, Iran.

    Get PDF
    The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct

    Myotis rufoniger genome sequence and analyses: M-rufoniger's genomic feature and the decreasing effective population size of Myotis bats

    Get PDF
    Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66x fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10x coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has batspecific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since similar to 30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity

    MassNet: a functional annotation service for protein mass spectrometry data.

    Get PDF
    Although mass spectrometry has been frequently used to identify proteins, there are no web servers that provide comprehensive functional annotation of those identified proteins. It is necessary to provide such web service due to a rapid increase in the data. We, therefore, introduce MassNet, which provides (i) physico-chemical analysis information, (ii) KEGG pathway assignment (iii) Gene Ontology mapping and (iv) proteinprotein interaction (PPI) prediction for the data from MASCOT, Prospector and Profound. MassNet provides the prediction information for PPIs using both 3D structural interaction and experimental interaction deposited in PSIMAP, BIND, DIP, HPRD, IntAct, MINT, CYGD and BioGrid. The web service is freely available at http://massnet.kr or http://sequenceome.kobic.re.kr/MassNet/close4

    PanSNPdb: The Pan-Asian SNP Genotyping Database

    Get PDF
    The HUGO Pan-Asian SNP consortium conducted the largest survey to date of human genetic diversity among Asians by sampling 1,719 unrelated individuals among 71 populations from China, India, Indonesia, Japan, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand. We have constructed a database (PanSNPdb), which contains these data and various new analyses of them. PanSNPdb is a research resource in the analysis of the population structure of Asian peoples, including linkage disequilibrium patterns, haplotype distributions, and copy number variations. Furthermore, PanSNPdb provides an interactive comparison with other SNP and CNV databases, including HapMap3, JSNP, dbSNP and DGV and thus provides a comprehensive resource of human genetic diversity. The information is accessible via a widely accepted graphical interface used in many genetic variation databases. Unrestricted access to PanSNPdb and any associated files is available at: http://www4a.biotec.or.th/PASNP

    Gevab: a prototype genome variation analysis browsing server

    Get PDF
    Background: The first Korean individual diploid genome sequence data (KOREF) was publicized in December 2008. Results: A Korean genome variation analysis and browsing server (Gevab) was constructed as a database and web server for the exploration and downloading of Korean personal genome(s). Information in the Gevab includes SNPs, short indels, and structural variation (SV) and comparison analysis between the NCBI human reference and the Korean genome(s). The user can find information on assembled consensus sequences, sequenced short reads, genetic variations, and relationships between genotype and phenotypes. Conclusion: This server is openly and publicly available online at http://koreagenome.org/en/ or directly http://gevab.orgclose2

    Gene Flow between the Korean Peninsula and Its Neighboring Countries

    Get PDF
    SNP markers provide the primary data for population structure analysis. In this study, we employed whole-genome autosomal SNPs as a marker set (54,836 SNP markers) and tested their possible effects on genetic ancestry using 320 subjects covering 24 regional groups including Northern ( = 16) and Southern ( = 3) Asians, Amerindians ( = 1), and four HapMap populations (YRI, CEU, JPT, and CHB). Additionally, we evaluated the effectiveness and robustness of 50K autosomal SNPs with various clustering methods, along with their dependencies on recombination hotspots (RH), linkage disequilibrium (LD), missing calls and regional specific markers. The RH- and LD-free multi-dimensional scaling (MDS) method showed a broad picture of human migration from Africa to North-East Asia on our genome map, supporting results from previous haploid DNA studies. Of the Asian groups, the East Asian group showed greater differentiation than the Northern and Southern Asian groups with respect to Fst statistics. By extension, the analysis of monomorphic markers implied that nine out of ten historical regions in South Korea, and Tokyo in Japan, showed signs of genetic drift caused by the later settlement of East Asia (South Korea, Japan and China), while Gyeongju in South East Korea showed signs of the earliest settlement in East Asia. In the genome map, the gene flow to the Korean Peninsula from its neighboring countries indicated that some genetic signals from Northern populations such as the Siberians and Mongolians still remain in the South East and West regions, while few signals remain from the early Southern lineages

    Conservation implications of elucidating the Korean wolf taxonomic ambiguity through whole-genome sequencing

    Get PDF
    The taxonomic status of the now likely extirpated Korean Peninsula wolf has been extensively debated, with some arguing it represents an independent wolf lineage, Canis coreanus. To investigate the Korean wolf's genetic affiliations and taxonomic status, we sequenced and analysed the genomes of a Korean wolf dated to the beginning of the 20th century, and a captive wolf originally from the Pyongyang Central Zoo. Our results indicated that the Korean wolf bears similar genetic ancestry to other regional East Asian populations, therefore suggesting it is not a distinct taxonomic lineage. We identified regional patterns of wolf population structure and admixture in East Asia with potential conservation consequences in the Korean Peninsula and on a regional scale. We find that the Korean wolf has similar genomic diversity and inbreeding to other East Asian wolves. Finally, we show that, in contrast to the historical sample, the captive wolf is genetically more similar to wolves from the Tibetan Plateau; hence, Korean wolf conservation programmes might not benefit from the inclusion of this specimen. © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.European Research Council, ERC: 681396; Consejo Nacional de Ciencia y Tecnología, CONACYT; Miljødirektoratet: 18088069This work was supported by ERC Consolidator Award 681396 Extinction Genomics, DNRF143 Center for Evolutionary Hologenomics, and the Norwegian Environment Agency (project 18088069). G.H-A. is supported by the Consejo Nacional de Ciencia y Tecnología from Mexico (CONACyT, 576743). Morten Skage, Mikeal Åkersson, Jouni Aspi, Kjetill S. Jakobsen, and Øyvind Øverli provided some of the wolf samples included in this study. We would like to acknowledge Zoo Zürich for providing the study with a sample from their Mongolian wolf.This work was supported by ERC Consolidator Award 681396 Extinction Genomics, DNRF143 Center for Evolutionary Hologenomics, and the Norwegian Environment Agency (project 18088069). G.H‐A. is supported by the Consejo Nacional de Ciencia y Tecnología from Mexico (CONACyT, 576743). Morten Skage, Mikeal Åkersson, Jouni Aspi, Kjetill S. Jakobsen, and Øyvind Øverli provided some of the wolf samples included in this study. We would like to acknowledge Zoo Zürich for providing the study with a sample from their Mongolian wolf

    Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent.

    Get PDF
    Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia into Africa have affected many contemporary populations, confounding inferences. Here, we present a 12.5× coverage ancient genome of an Ethiopian male ("Mota") who lived approximately 4500 years ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a population closely related to Early Neolithic farmers, who had colonized Europe 4000 years earlier. The extent of this backflow was much greater than previously reported, reaching all the way to Central, West, and Southern Africa, affecting even populations such as Yoruba and Mbuti, previously thought to be relatively unadmixed, who harbor 6 to 7% Eurasian ancestry.A.M. was supported by European Research Council (ERC) Consolidator Grant 647787 “LocalAdaptation”; R.P by ERC Starting Grant 263441, “ADNABIOARC”; M.H. by ERC Consolidator Grant 310763 “GeneFlow”; J.B. by the 2014 Research Fund (1.140113.01, 1.140064.01) of UNIST (Ulsan National Institute of Science and Technology) and Geromics internal research funding; J.T.S. by ERC Consolidator Grant 617627 “ADaPt”; K.W.A. by NSF award 1027607; D.G.B. by ERC Investigator Grant 295729-CodeX; V.S. by a scholarship from the Gates Cambridge Trust; and M.G.L. by a Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship. Permission for the archaeology was given by the Ethiopian Authority for Research and Conservation of Cultural Heritage and offices of the Ministry of Culture and Tourism for the Southern Nations, Nationalities, and Peoples Region. Raw reads from Mota are available for download through the National Center for Biotechnology Information, BioProject ID PRJNA295861, and the corresponding BAM and VCF files are available at africangenome.orgThis is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aad287
    corecore