19,832 research outputs found

    Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb

    Get PDF
    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion

    EAGLE ISS - A modular twin-channel integral-field near-IR spectrograph

    Full text link
    The ISS (Integral-field Spectrograph System) has been designed as part of the EAGLE Phase A Instrument Study for the E-ELT. It consists of two input channels of 1.65x1.65 arcsec field-of-view, each reconfigured spatially by an image-slicing integral-field unit to feed a single near-IR spectrograph using cryogenic volume-phase-holographic (VPH) gratings to disperse the image spectrally. A 4k x 4k array detector array records the dispersed images. The optical design employs anamorphic magnification, image slicing, VPH gratings scanned with a novel cryo-mechanism and a three-lens camera. The mechanical implementation features IFU optics in Zerodur, a modular bench structure and a number of high-precision cryo-mechanisms.Comment: 12 pages, to be published in Proc SPIE 7735: Ground-based & Airborne Instrumentation for Astronomy II

    An experimental study of the temporal statistics of radio signals scattered by rain

    Get PDF
    A fixed-beam bistatic CW experiment designed to measure the temporal statistics of the volume reflectivity produced by hydrometeors at several selected altitudes, scattering angles, and at two frequencies (3.6 and 7.8 GHz) is described. Surface rain gauge data, local meteorological data, surveillance S-band radar, and great-circle path propagation measurements were also made to describe the general weather and propagation conditions and to distinguish precipitation scatter signals from those caused by ducting and other nonhydrometeor scatter mechanisms. The data analysis procedures were designed to provide an assessment of a one-year sample of data with a time resolution of one minute. The cumulative distributions of the bistatic signals for all of the rainy minutes during this period are presented for the several path geometries

    Cellular automaton model of precipitation/dissolution coupled with solute transport

    Full text link
    Precipitation/dissolution reactions coupled with solute transport are modelled as a cellular automaton in which solute molecules perform a random walk on a regular lattice and react according to a local probabilistic rule. Stationary solid particles dissolve with a certain probability and, provided solid is already present or the solution is saturated, solute particles have a probability to precipitate. In our simulation of the dissolution of a solid block inside uniformly flowing water we obtain solid precipitation downstream from the original solid edge, in contrast to the standard reaction-transport equations. The observed effect is the result of fluctuations in solute density and diminishes when we average over a larger ensemble. The additional precipitation of solid is accompanied by a substantial reduction in the relatively small solute concentration. The model is appropriate for the study of the r\^ole of intrinsic fluctuations in the presence of reaction thresholds and can be employed to investigate porosity changes associated with the carbonation of cement.Comment: LaTeX file, 13 pages. To appear in Journal of Statistical Physics (Proceedings of Lattice Gas'94, June 1994, Princeton). Figures available from author. Requests may be submitted by E-mail ([email protected]) or ordinary mail (Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

    All-sky Relative Opacity Mapping Using Night Time Panoramic Images

    Full text link
    An all-sky cloud monitoring system that generates relative opacity maps over many of the world's premier astronomical observatories is described. Photometric measurements of numerous background stars are combined with simultaneous sky brightness measurements to differentiate thin clouds from sky glow sources such as air glow and zodiacal light. The system takes a continuous pipeline of all-sky images, and compares them to canonical images taken on other nights at the same sidereal time. Data interpolation then yields transmission maps covering almost the entire sky. An implementation of this system is currently operating through the Night Sky Live network of CONCAM3s located at Cerro Pachon (Chile), Mauna Kea (Hawaii), Haleakala (Hawaii), SALT (South Africa) and the Canary Islands (Northwestern Africa).Comment: Accepted for publication in PAS

    Cosmic Strings from Supersymmetric Flat Directions

    Get PDF
    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the abelian Higgs model, these flat-direction cosmic strings have the extreme Type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multi-tension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultra-high energy cosmic rays or non-thermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.Comment: 58 pages, 16 figures, v2. accepted to PRD, added comments about baryogenesis and boosted decay products from cusp annihilatio

    Research Notes : Harvest index of selected soybean germplasm

    Get PDF
    The distribution of total dry matter accumulation or biological yield in crop plants is very important in achieving high crop yields. In crop plants where the seed portion constitutes the product of economic or agricultural yield it is desirable that a greater proportion of available energy will be utilized for seed than nonseed production. The proportion of biological yield represented by economic yield was defined as harvest index (HI) by Donald (1962) and as seed yield efficiency (S.Y.E.) by Joshi and Smith (1976)

    Extending Phenomenological Crystal-Field Methods to C1C_1 Point-Group Symmetry: Characterization of the Optically-Excited Hyperfine Structure of 167^{167}Er3+^{3+}:Y2_2SiO5_5

    Full text link
    We show that crystal-field calculations for C1C_1 point-group symmetry are possible, and that such calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based quantum information applications. In particular, we perform crystal-field fitting for a C1_1-symmetry site in 167^{167}Er3+^{3+}:Y2_2SiO5_5. The calculation simultaneously includes site-selective spectroscopic data up to 20,000 cm1^{-1}, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from high-resolution Raman-heterodyne spectroscopy on the 1.5 μ\mum telecom transition. We achieve an agreement of better than 50 MHz for assigned hyperfine transitions. The success of this analysis opens the possibility of systematically evaluating the coherence properties, as well as transition energies and intensities, of any rare-earth ion doped into Y2_2SiO5_5 .Comment: 6 pages, plus 5 pages in supplementary information, 4 figures tota
    corecore