Precipitation/dissolution reactions coupled with solute transport are
modelled as a cellular automaton in which solute molecules perform a random
walk on a regular lattice and react according to a local probabilistic rule.
Stationary solid particles dissolve with a certain probability and, provided
solid is already present or the solution is saturated, solute particles have a
probability to precipitate. In our simulation of the dissolution of a solid
block inside uniformly flowing water we obtain solid precipitation downstream
from the original solid edge, in contrast to the standard reaction-transport
equations. The observed effect is the result of fluctuations in solute density
and diminishes when we average over a larger ensemble. The additional
precipitation of solid is accompanied by a substantial reduction in the
relatively small solute concentration. The model is appropriate for the study
of the r\^ole of intrinsic fluctuations in the presence of reaction thresholds
and can be employed to investigate porosity changes associated with the
carbonation of cement.Comment: LaTeX file, 13 pages. To appear in Journal of Statistical Physics
(Proceedings of Lattice Gas'94, June 1994, Princeton). Figures available from
author. Requests may be submitted by E-mail ([email protected]) or ordinary
mail (Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland