7,019 research outputs found
Ab-initio Gutzwiller method: first application to Plutonium
Except for small molecules, it is impossible to solve many electrons systems
without imposing severe approximations. If the configuration interaction
approaches (CI) or Coupled Clusters techniques \cite{FuldeBook} are applicable
for molecules, their generalization for solids is difficult. For materials with
a kinetic energy greater than the Coulomb interaction, calculations based on
the density functional theory (DFT), associated with the local density
approximation (LDA) \cite{Hohenberg64, Kohn65} give satisfying qualitative and
quantitative results to describe ground state properties. These solids have
weakly correlated electrons presenting extended states, like materials or
covalent solids. The application of this approximation to systems where the
wave functions are more localized ( or -states) as transition metals
oxides, heavy fermions, rare earths or actinides is more questionable and can
even lead to unphysical results : for example, insulating FeO and CoO are
predicted to be metalic by the DFT-LDA..
Electronic transport in AlMn(Si) and AlCuFe quasicrystals: Break-down of the semiclassical model
The semi-classical Bloch-Boltzmann theory is at the heart of our
understanding of conduction in solids, ranging from metals to semi-conductors.
Physical systems that are beyond the range of applicability of this theory are
thus of fundamental interest. It appears that in quasicrystals and related
complex metallic alloys, a new type of break-down of this theory operates. This
phenomenon is related to the specific propagation of electrons. We develop a
theory of quantum transport that applies to a normal ballistic law but also to
these specific diffusion laws. As we show phenomenological models based on this
theory describe correctly the anomalous conductivity in quasicrystals.
Ab-initio calculations performed on approximants confirm also the validity of
this anomalous quantum diffusion scheme. This provides us with an ab-initio
model of transport in approximants such as alpha-AlMnSi and AlCuFe 1/1 cubic
approximant.Comment: 11 pages, 5 figure
Concurrence in collective models
We review the entanglement properties in collective models and their
relationship with quantum phase transitions. Focusing on the concurrence which
characterizes the two-spin entanglement, we show that for first-order
transition, this quantity is singular but continuous at the transition point,
contrary to the common belief. We also propose a conjecture for the concurrence
of arbitrary symmetric states which connects it with a recently proposed
criterion for bipartite entanglement.Comment: 8 pages, 2 figures, published versio
Gutzwiller density functional theory for correlated electron systems
We develop a new density functional theory (DFT) and formalism for correlated
electron systems by taking as reference an interacting electron system that has
a ground state wavefunction which obeys exactly the Gutzwiller approximation
for all one particle operators. The solution of the many electron problem is
mapped onto the self-consistent solution of a set of single particle
Schroedinger equations analogous to standard DFT-LDA calculations.Comment: 4 page
A Heuristic Framework for Next-Generation Models of Geostrophic Convective Turbulence
Many geophysical and astrophysical phenomena are driven by turbulent fluid
dynamics, containing behaviors separated by tens of orders of magnitude in
scale. While direct simulations have made large strides toward understanding
geophysical systems, such models still inhabit modest ranges of the governing
parameters that are difficult to extrapolate to planetary settings. The
canonical problem of rotating Rayleigh-B\'enard convection provides an
alternate approach - isolating the fundamental physics in a reduced setting.
Theoretical studies and asymptotically-reduced simulations in rotating
convection have unveiled a variety of flow behaviors likely relevant to natural
systems, but still inaccessible to direct simulation. In lieu of this, several
new large-scale rotating convection devices have been designed to characterize
such behaviors. It is essential to predict how this potential influx of new
data will mesh with existing results. Surprisingly, a coherent framework of
predictions for extreme rotating convection has not yet been elucidated. In
this study, we combine asymptotic predictions, laboratory and numerical
results, and experimental constraints to build a heuristic framework for
cross-comparison between a broad range of rotating convection studies. We
categorize the diverse field of existing predictions in the context of
asymptotic flow regimes. We then consider the physical constraints that
determine the points of intersection between flow behavior predictions and
experimental accessibility. Applying this framework to several upcoming devices
demonstrates that laboratory studies may soon be able to characterize
geophysically-relevant flow regimes. These new data may transform our
understanding of geophysical and astrophysical turbulence, and the conceptual
framework developed herein should provide the theoretical infrastructure needed
for meaningful discussion of these results.Comment: 36 pages, 8 figures. CHANGES: in revision at Geophysical and
Astrophysical Fluid Dynamic
Absorbing Phase Transitions of Branching-Annihilating Random Walks
The phase transitions to absorbing states of the branching-annihilating
reaction-diffusion processes mA --> (m+k)A, nA --> (n-l)A are studied
systematically in one space dimension within a new family of models. Four
universality classes of non-trivial critical behavior are found. This provides,
in particular, the first evidence of universal scaling laws for pair and
triplet processes.Comment: 4 pages, 4 figure
Phases of granular segregation in a binary mixture
We present results from an extensive experimental investigation into granular
segregation of a shallow binary mixture in which particles are driven by
frictional interactions with the surface of a vibrating horizontal tray. Three
distinct phases of the mixture are established viz; binary gas (unsegregated),
segregation liquid and segregation crystal. Their ranges of existence are
mapped out as a function of the system's primary control parameters using a
number of measures based on Voronoi tessellation. We study the associated
transitions and show that segregation can be suppressed is the total filling
fraction of the granular layer, , is decreased below a critical value,
, or if the dimensionless acceleration of the driving, , is
increased above a value .Comment: 12 pages, 12 figures, submitted to Phys. Rev.
Dark energy with non-adiabatic sound speed: initial conditions and detectability
Assuming that the universe contains a dark energy fluid with a constant
linear equation of state and a constant sound speed, we study the prospects of
detecting dark energy perturbations using CMB data from Planck,
cross-correlated with galaxy distribution maps from a survey like LSST. We
update previous estimates by carrying a full exploration of the mock data
likelihood for key fiducial models. We find that it will only be possible to
exclude values of the sound speed very close to zero, while Planck data alone
is not powerful enough for achieving any detection, even with lensing
extraction. We also discuss the issue of initial conditions for dark energy
perturbations in the radiation and matter epochs, generalizing the usual
adiabatic conditions to include the sound speed effect. However, for most
purposes, the existence of attractor solutions renders the perturbation
evolution nearly independent of these initial conditions.Comment: 16 pages, 2 figures, version accepted in JCA
Field-induced local moments around nonmagnetic impurities in metallic cuprates
We consider a defect in a strongly correlated host metal and discuss, within
a slave boson mean field formalism for the model, the formation of an
induced paramagnetic moment which is extended over nearby sites. We study in
particular an impurity in a metallic band, suitable for modelling the optimally
doped cuprates, in a regime where the impurity moment is paramagnetic. The form
of the local susceptibility as a function of temperature and doping is found to
agree well with recent NMR experiments, without including screening processes
leading to the Kondo effect.Comment: 7 pages, submitted to Phys Rev
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
- …