46,160 research outputs found

    Superfluid phases of fermions with hybridized ss and pp orbitals

    Full text link
    We explore the superfluid phases of a two-component Fermi mixture with hybridized orbitals in optical lattices. We show that there exists a general mapping of this system to the Lieb lattice. By using simple multiband models with hopping between ss and pp-orbital states, we show that superfluid order parameters can have a π\pi-phase difference between lattice sites, which is distinct from the case with hopping between ss-orbitals. If the population imbalance between the two spin species is tuned, the superfluid phase may evolve through various phases due to the interplay between hopping, interactions and imbalance. We show that the rich behavior is observable in experimentally realizable systems.Comment: 13 pages, 11 figures. Published versio

    Acylsulfonamide safety-catch linker : promise and limitations for solid-phase oligosaccharide synthesis

    Get PDF
    Safety-catch linkers are useful for solid-phase oligosaccharide synthesis as they are orthogonal to many common protective groups. A new acylsulfonamide safety-catch linker was designed, synthesized and employed during glycosylations using an automated carbohydrate synthesizer. The analysis of the cleavage products revealed shortcomings for oligosaccharide synthesis

    FRW and domain walls in higher spin gravity

    Get PDF
    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.Comment: 63 page

    124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics

    Get PDF
    Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.We thank Martin Spitaler and the imaging facility of the MPI of Biochemistry for confocal imaging support
    • …
    corecore