278,576 research outputs found

    Schiff Screening of Relativistic Nucleon Electric-Dipole Moments by Electrons

    Get PDF
    We show, at leading-order in the multipole expansion of the electron-nucleus interaction, that nucleon electric-dipole moments are completely shielded by electrons so that they contribute nothing to atomic electric-dipole moments, even when relativity in the nucleus is taken into account. It is well known that relativistic electron motion, by contrast, leads to dipole moments that are not screened; we discuss the reasons for the difference.Comment: 4 pages, typeset by REVTeX, submitted to PR

    Nanoscopic processes of Current Induced Switching in thin tunnel junctions

    Full text link
    In magnetic nanostructures one usually uses a magnetic field to commute between two resistance (R) states. A less common but technologically more interesting alternative to achieve R-switching is to use an electrical current, preferably of low intensity. Such Current Induced Switching (CIS) was recently observed in thin magnetic tunnel junctions, and attributed to electromigration of atoms into/out of the insulator. Here we study the Current Induced Switching, electrical resistance, and magnetoresistance of thin MnIr/CoFe/AlOx_x/CoFe tunnel junctions. The CIS effect at room temperature amounts to 6.9% R-change between the high and low states and is attributed to nanostructural rearrangements of metallic ions in the electrode/barrier interfaces. After switching to the low R-state some electro-migrated ions return to their initial sites through two different energy channels. A low (high) energy barrier of ∼\sim0.13 eV (∼\sim0.85 eV) was estimated. Ionic electromigration then occurs through two microscopic processes associated with different types of ions sites/defects. Measurements under an external magnetic field showed an additional intermediate R-state due to the simultaneous conjugation of the MR (magnetic) and CIS (structural) effects.Comment: 6 pages, 4 figure

    Asymmetric Avalanches in the Condensate of a Zeeman-limited Superconductor

    Full text link
    We report the non-equilibrium behavior of disordered superconducting Al films in high Zeeman fields. We have measured the tunneling density of states of the films through the first-order Zeeman critical field transition. We find that films with sheet resistances of a few hundred ohms exhibit large avalanche-like collapses of the condensate on the superheating branch of the critical field hysteresis loop. In contrast, the transition back into the superconducting phase (i.e., along the supercooling branch) is always continuous. The fact that the condensate follows an unstable trajectory to the normal state suggests that the order parameter in the hysteretic regime is not homogeneous.Comment: 5 pages, 5 figures, to appear in PR

    Certain comments on the application of the method of averaging to the study of the rotational motions of a triaxial rigid body

    Get PDF
    Averaging technique applied to variational equations describing rotational motions of rigid triaxial body in elliptical orbi

    The role of attractive forces in viscous liquids

    Full text link
    We present evidence from computer simulation that the slowdown of relaxation of a standard Lennard-Jones glass-forming liquid and that of its reduction to a model with truncated pair potentials without attractive tails is quantitatively and qualitatively different in the viscous regime. The pair structure of the two models is however very similar. This finding, which appears to contradict the common view that the physics of dense liquids is dominated by the steep repulsive forces between atoms, is characterized in detail, and its consequences are explored. Beyond the role of attractive forces themselves, a key aspect in explaining the differences in the dynamical behavior of the two models is the truncation of the interaction potentials beyond a cutoff at typical interatomic distance. This leads us to question the ability of the jamming scenario to describe the physics of glass-forming liquids and polymers.Comment: 13 pages, 12 figure

    Further comments on the application of the method of averaging to the study of the rotational motions of a triaxial rigid body, part 2

    Get PDF
    The second and final step in the development of first-order secular solutions to rotational motions of triaxial bodies is presented

    Quantum-mechanical communication theory

    Get PDF
    Optimum signal reception using quantum-mechanical communication theor
    • …
    corecore