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CERTAIN COMMENTS ON THE APPLICATION OF THE METHOD
OF AVERAGING TO THE STUDY OF THE ROTATIONAL MOTIONS

OF A TRIAXIAL RIGID BODY

1. Introduction

As indicated in our February 19, 1971, report, we
nave been interested during the past several years in des-
cribing the rotational motions of a rigid triaxial body
about its center of mass, while the body is orbiting a-
bouts, and influenced by, a second (primary) body. In our
February report we mentioned that we had been studying the
averaging technique as a preliminary step to using it in
treating the variational equations for the trixial rigid
body problem cited above. There we gave our interpretation
of the theory which lies behind the method of averaging
(which has been developed by Bogoliubov and Mitropolsky [ 171.
as described in the recent studies and applications by
Kyner [ 2] and Morrison [3]} In this report ﬁe describe
some of the results we have obtained in applying the avera-
ging method to the triaxial rigid body problem.

If the perturbing torque is known, the first-order,
(in a small parameter), secular solutions associated with
the canonical variables ( o(; ﬁ ) can frequently be obtained

by applying the method of averaging to a dynamical system

of the form
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H
C;(k = /a 1 (k=l,2:..-;l")
(1.1)
By=- 2
T Ak

where Hl is the perturbing Hamiltonian.

The discussion in this report is based on seversl
assumptions. It is assumed that the rigid body moves in
an elliptic orbit about an attracting point mass M. (Actual-
ly in carrying out the details, ‘it is convenient to view

M as moving about the rigid body). Although the orbital

plane is assumed to have a constant nongzero inclination
angle @b 5 1t is to precess at a constant rate 13.@ It

is further assumed that the rotational kinetic energy of the
rigid body is large compared to the effects of the perturb-
ing gravitational potential and that the rotational rate

of the body with respect to its center of mass is large

when it is compared to both the orbital and orbital preces-
sion rates. These assumptions are satisfied if the angular
velocity of rotation is greater than 1 deg./sec.

We can view the averaging procedure as being composed
of two steps. In the first step, we introduce a trans-
formation of variables to replace our starting dynamical
system with an intermediate set of averaged differential

equations in which (to first-order in a small parameter)
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the fast variables have been eliminated. In the second
step the averaged differential equations are integrated.
either numerically or (if possible) analytically, to
obtain first-order secular solutions. Hitzl and Breakwell
[h;} have obtained a first-order, gecular description of
the motion of a gravity perturbed triaxial body in a non-
precessing, elliptic orbit by applying the method of
averaging to a dynamical system of the form (1.1). In
Section 5§ of thés report we carry out the first step ol
the averaging procedure and derive the averaged differential
equations for the extended problem of a triaxial body in
a precessing, elliptic orbit. The development is carried
out to the point that the averaged differential equations
are in a form which can readily be integrated if it is so
desired. These averaged differential equations will re-
duce to the corresponding equations of motions in [ ] if
(i).fi = 0 and (ii) if two of the fast varying Euler angles
which are used as canonical variables in [ ] are’transm
formed to the counterpart variables in our development.
The second step of the averaging procedure will not be
carried out for the canonical variables because we give,

in later reports,first-order secular solutions for an
alternative set of noncanonical variables. The formu-
lation of the averaged differential equations of the
motion in terms of the canonical variables will, however,

be discussed thoroughly. For thig reason, an explicit
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expression for the gravity-gradient potential energy V is
derived in Section 2 of this report as a preliminary step
in formulating the averaged variational equations.

The Hamilton-Jacobl method of canonical transfor-
mations is used in [g ] to obtain an exact solution of the
unperturbed problem of rotational motion. Since this so-
lution will be used as a basis to establish the equations

of motion for the perturbed problem discussed later,

the necessary definitions and essential results for the
unperturbed problem will first be summarized briefly.
For further detail see [ 5],

2. Coordinate systems

As shown in Figure 2.1, 1let O represent the center
of mass of the body. Choose a rectangular coordinate
systenm O:’g&[‘g sothat the i:—axis lies along the angular
momentum vector h, positive in the sense of h. Consider
a planes; perpendicular to the § -axis, which contains
the center of mass. This plane intersects the x*y%;plaﬂ@
of the space-fixed, but otherwise arbitrary, rectangular
frame Ox*yfz%in a line of nodes ON. The %ﬂ ~axis is chosen
to lie along the line of nodes, its positive sense being
arbitrarily chosen. Then the i.-axis (not shown in
Figure 2.1) is chosen to form a right-handed system. The

Euler angles between the inertial system Ox*yxzx and the

—=T x ¥
system 0 § 4 5 are ¥, O and qﬁ*.
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Let Ox'y'z! be the body-fixed, rectangular , principal
system and let ¢;%, a's ¢' represent the Euler angles
relating the Ox'y'z' and O_?%;f systems. We will refer
to the x'y'-plane as the body-fixed plane. The Euler angles
relating the body-fixed system Ox'y'z' and the space-fixzed
system Ox*yﬁgﬁiwill be designated by ¥, @ , and & .

Let 0x°y©°z° be the orbital system. The z%-axis is
taken positive in the sense of the angular momentum of the
attracting point mass. We will refer to the x°y°-plane
as the orbital plane. The Euler angles between the orbital
system Ox°y°z° and space-fixed system 0x y z are {l andg & °.

The system Oxyz is referred to as the angular momentum
system. The z-axig is taken to coincide with the §«~axis
and the x-axis is the intersection of the angular momentum
plane, i.e.s the xy-plane, and the body-fixed plane. Then
the y-axis is chosen to form a right-handed system.

Let yd*, 6*9<¢* be the Fuler angles relating the inertial
system Ox*yxzx.and the angular momentum system Oxyz and
let V/H,(9H,<¢Hbe the Euler angles which relate the
orbital system 0x°y©°z° and the angular momentum system
0xXyzZ.

Referring to Figure 2.1, we note that the orienta-

tion of the rigid body with respect to the Ox 'y z . system

can be explicitly determined by one of the three sets of
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angles(\/J; @‘5#’):(\'0*‘2 Q*sdj) :6': (779') or

(4Q~’<90’V%3’4 s o ,o's ') s where (1 is the right
H
ascension of the line of nodes and & °© is the orbital in-
clination angle.
LK LR X co s . s
The sets of vectors (1", J »k )s(1i°, 3% k®)s(1s1:k)
and (i',j',k') are the sets of unit vectors of the inertial

% .
system Oxxy Zz s orbital system, 0x°y°z°, angular momentum

system Oxyz and body-fixed system Ox'y'z', respectively.

3. The Unperturbed Problem

It aas been shown in [5 ] that if the set of angles
( V’i 6?1<¢x9éQ':ﬁﬁandthemagnitudet1of the angular momerntum
‘are used,the six independent quantities comprised of
(’W¥9(9%3¢5') and their congugate momenta (p jk,p ¢ 3pbz
will be sufficient to describe the unperturbed rotational
motion of a body about its center of mass referenced to
the inertial system Ox%y¥z*} When the unperturbed Hamilton-
ian Ho is expressed in terms of these variables, the
associated Hamilton-Jacobi partial differential equation
is separable. A canonical trénsformation from the varisbles
(iﬂxy 6", ¢"pvﬁ"pb* ,pd>y) to a new set of canonical
quantities (“’l’7<2 X2 /91 o2 /43) may thus be obtained.
The new quantities are constant for the unperturbed motion.

The explicit équations of transformation are



- — ]
t ﬁl_L(vé ) >
*
Bo=-wh
p¢¥ = 2:‘1;
Tl
P,y = C(af + b!' sin2 4t /2=h cos g’
¢ c' + d sin2¢' J
P =O{,=h0086¥
VJ’K 3

where t represents the time and

L(gp") =BlCI(dn),

(")

]

- ¢ LI I
FXZIB(gﬁ )

(g = (7 a g ;
1/2
' f(a'+b'sin2¢ ')(c'+d'sin2¢ ')_7

t

¢
I(gp') = [(A-B) sin2¢p'- Aldcp! ;
3 - ‘ . s1/2
1 Z(a'+b’sin4¢')(c’+d'sin4¢')_f

(f)/
al= A(2BO{1— o(g) s
b' =y 2 (A-B),
o<2(

c! = A(B-C) b

d' = C(A-B)

(f)

(a)

(e)

()

(g)
(h)

(3.2}



and A, B, C are the principal moments of inertia of the body.

In writing equations (3.2), we assume that 0 < @' < /2

and also that & > B > C. The quantity a! may be positive,
negative, or zero. We assume that a' is a nonnegative
quantity.

The physical meanings of the canonical constants
can be identified. The constant q’l is the kinetic energy
of the rotating body ok the unperturbed Hamiltonian function
Ho' The constant c{z is the magnitude of the angular

momentum vector h while ¢ _ 1s the magnitude pyu% of

3
the projection of h 1in the z"-direction. The constant
/51 is an epoch time corresponding to a value g' = ¢’
o
/32 is a reference value of <?;4when @' = ¢' and
o

%

is equal to -.V% .
3
Equations (3.2) have been inverted to express the

. o ¥ * .
independent variables 2 e 9@5'9pvﬁf:p6*_3pc$' in terms
f the canonical ¢ tant X nd th
o anonica onstants 0(1, AE: “}’/él’fﬂz’/43 and the
time ¢t o The details of the somewhat lengthy procedure

appear in [ g]. The results are

cn u > ) (a)
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«\’*_ g , -
P o= —ﬁ2+§(t—ﬁl) . [u/\.o(/ﬂ,k)—ﬁs]s (k < - 32 <)
= -/ +§[1— (4-B) (k)2 [ (-4
° B ALy 2 - 19 (b)
- L [uAO( '}’7 s k) +_Q_1] s (0 < _YZ < k)
2K
™
= e 3 (C}
r,
(3.3)
1/2
C(2A - hz)_R /
P ,, =hcosg’' = 1 dn u (a)
# A-C 3
pcf'% = h = O<2 3 (@)
py),,,6 _.bcosé‘%=q/3 s (£)
where
g = (1 - ngfl/z - [é(A-c>”’l/2 (a)
A(B-C) )

n/f2
X = j a8 5 (1)
0 Ul-ka sinzg

L N G AN
C .2 s )
\ 1 - n; (B-C) (280, -h?) v

ko= (1 - k0 Y2, (a)
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periodic functions of the argument v with a period 277 .

The functions chf‘l:%: and_§zl have the following

definitions:

Aa(ﬁ:k) =i't2_[EF( ﬁ,kt)_'_KE(/g’kt)__KF( /ﬁ’k')}, (a)

-_&/2 = U
5 -
1 m2
@Ktan-lje 2 (-1 gm® gin(omy) sinaf2m(p-u Eb’;b}
T Y = 2
L\1+2 Z:i(—l)mqu cos(2mv) cosh[2m(p-w }}E
' (3.5)
= m+l m=2 o >
O gﬁtan—lg 2(53(—1) a sin(2mv) sinh(2mw ) - (o)
1 T / oY 2 \
t 1+ 2:2?1(—1)mqm _cos(2mv) cosh(2mw L)
where
B
F(Bsk!) =f ab , (a)
: Y2 qip2g) /2
_ o (1-(k')2 sin28)
P , 1/2
E(/B,k') = ( (1 -(k')2 sin2@) &6 (b)
0
(3.6)
ﬁ—Tbe definitions, basic informé%ibn and the applications

of elliptic integrals are all referenced to Byrd and
Friedman [6 ]. :
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E = E(5k) , K= %k » K = F(Ek') (e)
(3
p = %%L , wio= gF( B k) , q=e 2P | (a)
2K

We note that during the inverting procedure, we have
taken ' = - w/2 .

Equazions (3.3) represent the exact solution to the
unperturbed problem of rotational motion of a triaxial
body. From elementary spherical trigonometry the variables
(7«!/'%’ 69" ¢',pujx-,p6»e ,p(p,) can be expressed in terms of
the variables (y}’é}’¢)’pV”Q9 2Py, } which relate the
body~fixed and the space-fixed systems. The explicit
equations of transformation, which appear in [ 5 ], are

repeated here for convenience of the reader. They are

C = C c

(a)

é @l 6* s(j_}l s(_)* c¢,*
s, = (1-c2 )2 (b)
ot % Cwov9 T e T % % v
S s s s (a)

2 Y- y* PX " a4t
¥-v7) (3.7)

Se'sé c(¢:¢ﬂ =°9%"C@rcg (e)
s(9 s @$”¢U = S@* S¢% (f)
= - (o)
pQ P¢*Sé, SG?-¢U L gl
Py = h c@* (h)
p, =p (i)
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where c oK = cos o s Sy = sinx .

In a later section of this report we will use the
method of averaging to study the first-order, secular
solution for gravity-induced perturbations of an orbiting
triaxial body. For the problem of rotational motions,
if the orbital plane is assumed to precess at a constant
rate _ﬁL s> with constant inclination (9°! an alternative
set of variables (*WH, GH,lﬁﬁ, ', p'sh) has been found to
‘ g’ Te-
late directly to the orbital plane x°y°, rather than to

be convenient, since the Fuler angles TVH’(¢H’ S
. . . xR . .
the inertial plane x y . The geometric relations

C - S@-O SQ%C@}%_&)

-3

S L t = —
6% S(‘;_I_/*.,_Q)CO \-VH o ° CQ% 06 OS@X‘ c(l(/;‘-.-.ﬂ_)

(3.8)

c s - )

S o, 8 % _ cot = s .C C s (¢
g° (v*-u) (¢*-¢H) 6 0% TB° % (vta)
are readilj deduced from elementéry spherical trigonometry.
Fquations (3.8) relate (?st @a1<¢;2 G'spt ) to
(Qsp° Yy Oy’ Py’ 6's@'). We will have to show later
that the equations of motion fqr the latter set of wvariables
has the proper form for application of the method of
averaging. For this reason,we would like to express the

trigonometric functions of the fast variables ¢H’ gtsgt

in terms of periodic functions of the two new fast varisbles
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v and ve<with period of 2n. One of these variables

v = mu/2K has already been defined. The second variab
*

v ", which is also a linear function of time ¢t , will be
defined in the equations to follow. TUsing the Fourier
series expressions for the Jacobian elliptic functions
sn us cn u, dn u given in [6 ] and equations (3.3), we
can show, if k ¥ 0, that
o 1/2 2 3/2] 5/2,
8 = - 21m (cv)q +(—cv+ 03v+2Bo c;)q ! +0(qg )
@ gkK i
_ 1/2 2 2 3/2 5/2
cq),... %[(sv)q +(sv+ 53V+2B0 svcv) q +0(qg ) s
1/2 2 2 2 2z 2 N 2 |
={ k= 1- - - LF
s g (EZ} {j (2B, cv)q+(L;BO c, uBO CyCay 2B, cv)q )
T .
-O(q3) 2
nal1/2 3
= 2 2‘ 3 ”%(
Ce' {._2) (%‘K) {h(ucev)q + (hcuv)q ] + 0(g~”) (2
n
1
- 1/2
S 1 = (™1 1 +(2B ¢ q +
o v
B2 o° € Lo by 42 3
+(-LB c + uBo c Cyy * 6BO Cv) q ;(+ 0(qg-) »
s 4, =5 x-(I.s cv*)q (I8, ¢ 4 +1 1% s° g ¥)q2 +O(q3)ﬁ
:PH 172 2 LL v 7 1 2v v

le

5
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-

2 2 2
= ‘ - 2.4.0 1

¢H = v* -'(Il SZV)q --(I2 SLW) qe + O(q3):

where
2 2
n
Ba= 2'1-{ r)
=
k“k”

V=Ck)t-0<g

0 =ae D f\ K -1 k< -v2 < oo
= 4 S s - s -y | e
G- RS VXY J y
=h -8 (AB (k)% - M A (F K, O0<-y <k
B B A(y =-k?) 2k ©

%
& = -/32“ [Q. + __>_\_E(Ao(;‘,k)-1jﬁl+constant, 0< - 2< it
B 2K - | -

| - - (3+10)
=-f_-lh-n@apr® ~ e
s T T Tt - AT +constant, 0 <=+ < k

LB B A’(z{‘—kz) ......_.ZK J/J{l 1

sinh {Z(p-w*)], k < -)/2 < D

[l
H
i
n iR

sinh Zw*, 0 < -2 < k

Y
I, =1 sinh[l;.('p-w*)'?, k< -.2 <w
2 "X ;7 L

=sinh)+w)é, 0<-y2<k.
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L. Gravity-gradient Potential Energy

As shown in Figure lL.1l, the origin O of the in-
ertial system Ox%y*zxis located at the attracting point
mass M and the origin 0! of the body-fixed system
Ox'y'z' is located at the center of the mass of the orbit-
ing rigid body m. The position vector R, is drawn from I to

the center of mass of the orbiting bodys R represents the
position vector of a differential‘mass dm of the body m
refere;ced to O% 5 r represents the position vector of the
same differential mass referenced to 0' and g= EO/RO s
where R, =;B The function V which represents the

@

ol
potential energy of the mass m, due to its presence in

the gravity field arising from M, can be written

v=-oul\( an, (1)
\
‘m -
where G is the gravitational constamt, R = &Bf s and

the gravity field is the negative of the gradient of V.

An explicit expression for the pobential energy V for a

body of unit mass is given in | 5sequation(1ll.l.15) ,p.3517,

This expression, which is valid to terms of the order of

2
r \ s {(r=/r|)s, may, for a small body of mass m, be
o]/

written in the form

V=-9.Mm_+§9_M(.Q§A+j§B‘+£2C) - GM (A +B+ 0. (L.2)
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®
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In (L{.oZ) ﬂlx QZ

of the position vector Bo with respect to the body-fixed

s and _ﬁB are the direction cosines

system Ox'y'z'.

A For purpose of the later analysis, we would like
to express V in terms of the‘fast_variables qpﬂf v and
the argument of latitude (9L. The equations of transfor-
mations from the body-fixed sysfem Cx’y'z' to the angular
momentum system Oxyz and from the orbital system Ox°y©z® to

the angular momentum system are, respectively

a="T a' , | (a)
(L.3)
a = T° a° , (b)
where btho elemcnts of the matrices
C‘?' -3 ?' 0
T - ssb'cg' C41er TS, (a)
s s
¢ b %6 So
.
(Lol
i )
cyc, -8 s ¢ 8 ¢ +c. 8 ¢ S, S [
Ya4H Vo PH 6H VA PH YHE9HOH  PH 0H |
To f
g = -C S -8 C C -3 s . +cC C C [¢] S ;
Wi Py ¥H P g Ve 95 VYH PH 6 9¢H °n | (o)
s, 5. : -c , s c
R W O 5 I

~— . -
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are readily deduced from thé geometry of the rotations.
(4.3) a 1is any vector referenced to the angular
momentum system Oxyz. The quantities a' and a° represent
the same vector referenced to the body-fixed system Ox'y'z'
and the orbital system 0x°y©z°, respectively. By using

the fact that

L= 91‘10 + sé jo (L.5)

and the equations of transformations (lj.l})), we find,

after some tedious manipulation, that

V(Ros Vg = 65 B P (V)5 ' (V)5 @' 6V))

=- GMm - 1 GM (A + B + C) +
Ro RO3
+3 GM ( 2 RAC +Bse) cz-ﬂiA B) s cC s cg
2" 3 -0l ! v Sy ey 2¢' g1 729y Oy
0
_
- 1 (A-B) S, s

(L.6)

!
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2

2 = 2
A Bs, ) -1(A-B .
+C(¥}H-6L)& 04}5'+ S<75' C‘?H _2_(A ) 82925"00 SZ@H +

= 2 2 2 2
+ ((As_,, +Bc )c  +Cs s +
P et o) VH

/

' 2 < T
f%sg(wH_él) —(Ac¢’+BS¢’)82¢HCGH+%(A—B)SZ?'Q¢H89HS%’

2
+ (A-B) SZqﬂ'Cgr(l'zc ‘?H) CQH

+[(as®, +Bc” Yoo +0Cs S c
¥ ¢t o '/ 27y 9

as” 4Be® -C |
- s¢' + ccp' 829'879H SSHJ
Since, from the unperturbed solution, the q/L'{s and 2 i‘{s

3 6": ¢ s 6": ', we
H H H ?
can view V as a function of o " and /3 K’ k= 1:2,3.

are related to the Euler angles V

5. Equations of Motion for Canonical Variables

Since the perturbing gravity-gradient potential
energy V 1s conservative, the differential equations
g 4 )
0( = - >V O(k’ﬁk s k=1,2,3 (a)
k
CAR
2V(AA) | w1,2,3

0 A x

4

A

il
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can be used to study the variations of c&k and /3 .

In equations (5.1), 2V/ 9y Y v/ A k=1,2,3,
are continuous functions of d'k,/@ e Since certain of
the canonical variables o<k and /9k are expressible in fterms
of @L, @H, @', and$', we can also view ?V/gbgk and
E)V/aﬁ:k as contalning explicitly these latter variables.
In this sense ?’V/go(k and av/a/;k have the same function-
al dependence as V in (L.6). Also they are periodic functions
of time of each of @i,<¢H; 6's ¢ with period 2m. We
note also that thé magnitude of these partial derivatives
is of the order of € as compared with the unperturbed
values ?f g{k and /6 " Here € 1is defined as the ratio
oﬁftﬁgﬂberturbing potential energy V to the rotational
fﬁinetic energy T.

Through the well-f%%wn relations from orbital analysis

(5] . ;
'QL = @+ f

— 2 3 e
= W +M+Q&-19%&%§es-413es~+MSﬂi8¥
0 M e M
I n M T2 3

(5.2)
R, = a(l - €9 , (b)

and equations (3.10) » the‘ﬁotential energy V can be also

viewed as containing the variables ﬂﬁv*} and v. In (5.2
&% represents the anglé between the x?—axis and the axis

from the origin O thfough the psrigee of the orbit, T

and ﬁmrepresent the true and mean snomalies, respectivelys
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e(0 <e < 1) and a represent the eccentricity and semi-
major axis, respectibely, of the orbit. The partial deri-
vatives ¢V/ 3y o and 2 V/ a/é'k are therefore continuous
functions in M, v”*, and v and periodic functions in each
of these three variables with period 2m.

We will choose M, vﬁ$, and v as the fasf variables.
A1l the fast variables in the potential energy function ¥
can be expressed explicitly‘in terms of M, v¥and v and
the time derivatives ﬁﬁ v* and 5. have the same mathema-
tical form, to the first-order, as‘equations (1.1(b)) of
our February 19, 1971, report. (Further references to

equations in the February report will be prefixed by the

letters F.R.) In order to identify them as the fast variasbles.

we will designate ﬂivﬁéanﬁ v by yl, y2

Their time derivatives are given to the first-order by the

equations
§1 ='M= N (a)
2 ¢ ¥ 4
y. =V = W , (b)
2 (5.3
§ = Xaf = _?\__’jl . (C)
3 oK

where n is the mean motion in the orbit.
So that the form of our eqmations will be consistent

with the form of equations [F.R.(l.l(b))], we introduce

and y3, respectively.
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the definition

Vi = 1V (5ely)

e

and rewrite equations (5.1) as

§ = .e OVASAY L pa,2,3 (a)
k
RN
(5.5)
A= 2TASAY  ke1,2,3 (b)
i >,

The equations of motion, specified by (5.5) for the
six slow variables « . and ’67k and by (5.3) for the
three fast varisbles W, v and v, are of the form [FoR.(1.1) ]
when M = 6 and N = 3 and hence are in the proper form %o
apply the method of averaging as outlined in our February 19
1971, report. We will carry out the method of averaging
up to the point where we replace the six first order
differential equations for 5(190;2,c{3,;§1,/§2,/% by the
six transformed differential equations corresponding to

[F.R.(1.3(a))]. Although we do not carry out the details
of the integration, the transformed differential system

is in a form where it can readily be integrated to obtain
g first-order secular solution for the (c(k,/ék), k=1:2:3.
We assume that the nonresonance condition [FeR.(2.3)]

is satisfied and we introduce the transformation [F.R.(1.2)]
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¢ — -~ ) _— - _ \
Ay = At éPk(O(k,/Gk, ) k=1,2,3 (=)

(5.6)

/3) k+ €« Qk( &hk: /Bk, yk) k=1,253 (b)

i

Py

where

.

i - _ n B
O(k = o/k(a,e, a)o: V/H: @H): ﬂk—ﬁk(aye, CJJOJ ?//Hy gfﬂ} s (5 C}}

If we consider only the secular solutions for the slow

variables, equations [F.R.(1.3a) ] become

q/kz 6Uk(5<.k’ﬁk), '_k=1:2y3 (a)

-

G'Vk( o(k’/gk)’ k=1,2:3 (b)

S
e
i

for suitable functions Uk and Vk .

and [F.R.(1.1l) ], equations (5.7) become

If we use [F.R.(Ll})}

2n 2n 27

A 3 AV (X s x
o(k - g{%_ﬂ" f f f | 2 Py %Qdyldyzdysy ()
S0 0 0 2 fx

W
&
o

. 2n 2n 2%

B = f f f DV, ﬁk’ k)dyldyzdy3 (b)
0 0 k

where k=1,2, 3.
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The remainder of our effort in this section is aim-
ed at expressing the right hand sides of (5.8) in more
compact form. Recalling (L.6), we define V! and V_ by

the eQuations

- K
VG( 'IIJH: GH) ROJM:V sV) =V + GMm +

We note that the last two terms on the right hand side

of (5.9(b)) are independent of the O{k

therefore (5.8) cam be written in the form

's and ' ad
/Qk s an

o 2n 2n 2%; (a)

"

0( )[f f?'("(ﬁﬂk kdyldyzdy“klzg
X

(5,10)
. 2n 2n 2m (b)
4 CARSCES ﬂ 2 5,,)
Sy = _1?{ f } 5 k"7 dydy,dy ;s k=1,2,3

o

or simply from relation (5.9(a))



25
2n 21 27|

3

CICR:

2n 2n 2% _
- 3 ] QIV (s 5 Y,.)
,6 ( ) ( ( w0’ B Ty ay,d5 47,

k

Since the of's and /3'3 are slow variables they may,
k k

5(— = -(1)3[ f f 9V(°(k’ﬂk’yk) dyldyzdy sk=1,2,3 (a)

o

the first order, be treated as constant parameters in the

integrands. Thus, using Leibnitz' rule, the order of

integration and differentiation may be interchanged and

we have
21 2m 2%
= -
N . Tk 3 j~ §~ jh‘V( 4 :y) dy dygdy3§
!
. 2n 2n 2%
— 5 3 - ‘ _ _ l
ﬁk T Q_l_) S ( § ve( o(ks/@k,yk)dyldyzdya .
de 2’1[ 5 5 A mg

If we introduce the notation
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—_

— 0 ; T, =
Ve( ase, o’ WH: GH)— ve( (X/k’ ﬁk)

2n 21 27
3
= () Ve 71952953 (5.13)
21w ‘
0 © 0
equations (5.12) become
O(k = gve(dk,ﬂk)y E) k=132:3 (a)
B
(5.14)
2 v (T .
/@ =--? e(O(k’/ﬁk) 3 k=1)2)3 (b)
k
24,
The true anomaly may be introduced as a variable of
integration to eeplace.ﬁ_through the use of the well-
known two body orbit relation [5]
— R2
aM = o ar (5.15)

1/2
a2(1l -e?)

and relation (5.2(b)). Again, a, e, s u/H, HH may
be treated as constant parameters within the integrands.

If equations (5.15) and (5.2(b)) are used, we can write
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2n 21
' 1l+c s
S' Vedy, = g - S £ v ¥ ar
a(l ~ e
0 0 a2(1 e2)1/2
= n2 s (5,16)
3/2
(1 -e?)
where V§L= Rg vV /GM. If we examine (L.6), we note that:
27
in forming f—vedyl, integrals of the three types
0
2% 2% 21
s e o .
s | c,, 4f, c c. Adf, g‘s \ cdf
J (Wa-op) * j (yu-op) f AWy Op)F
0 ' 0 0

. W te that -6 =Y W _ £ from (5.2).
appear e note tha yVH 5 @VH o (5.2)
Since ’WH: and Cdo are both slow variables, to first
order, the three types of integrals will vanish because
their integrands are odd functions which contain either

cos I or sinf . We can thus conclude that
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and write

27
2 ¥ / \
Ve dyl = n Ve artf . (5.17)
0 (1 _6@3/2

To the first order,A we have d(q)H -(9L)= - df s 8o
that we can write*
2@ : (‘WH—ckg)
V_dy, = n” v *a( )
ey = e 407 H'CQL
q ( Vg COO)—Zﬂ
(5.18)
Since for & real, definite integrals of the form
A +27 of +21
g2 d(wWe - ) c” a(y,. -6._)
(Y= 6) (W L'’ ( (Vg 01) ‘_(WH L
/
X & +2m o
and j SQ(VH_ QL) d(_\{/H -0 ;) have the same value
ol

* Relation (5.18) can also be obtained by direct substitution

of (5.2)intoequation (5.17) with no restriction as to order.
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over any interval of length 2n equation (5.18)
becomes
21 27 ,
( V dy, = ___n® v (- 6) (5.19)
y e Y1 375 e "H L’ Vol
0 (1 - e?) 0

In carrying out the second integration (i.e., over

Jp = v™) as indicated in (5.13), integrals of the types

27 | 27 27 21
. 3% . . . .
J qu av ( g dv*x /( Saq) dvx- and f Cip dv ™
H J "H H ) H
0 ’ ‘ 0] 0 0

appear. We note from equations (3.9) that

.)(. \
CPH = v + vj(v} . (5.20)
whers vae(v) == (I 8,09 - (I, 8 ) 240 3)  is
Hebs s Vi = 1 Spy’' 9 2 Syl + (g is
treated as a constant during the integration over y2*
27 27 |
(' * X .
Thus S 4 dv  and ¢, dv"  both vanish and
J T Py Py
0 0
2% Zn 27 27

o

2 ¥ L2 2 X 2
d = 3 = 3 @
{SQ% v f’s¢Hd¢H f c%i&r f cﬁﬁaﬁH
0 0

o
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We can then write

[~ 2n | 2% ]
jyv dly - dy,= ‘g gﬂv:a(WI{-QL) dopye
0 0

Using (5.19) and (5.21), we rewrite (5.13) in the

form

21 Zn 2ﬂ

Vv = n# v a(w §p)a¢ ;av.
- 5—) f J ,O H™ Pgdve

(5.22)
Treating all slow variasbles as constant, we can carry outbs
to first order, the integration with respect to (u/H~ d_)
dd
and < . It is clear from (l.6) that only trigonometric
funciions of the relevant arguments appear in the integrands.

Thus ths nrocedure is quite straightforward and we find

that
2T
V_ = _ 3n2 g‘ 1 (A+B- 20)(1- 3¢5 )(1 3¢% )
© (1 3)3/2 2ﬂ {- 6 ¢
-, 2 2
- TE {A-B) (1~ 3c QH)CZ¢)' SG , F % (A+B+C);? dve

(5.23)
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The last term in the integrand of (5.23) gives rise
to a term which we label Qv. Since A + B + C does not
depend upon the o's and ﬁ%‘s, Qv will contribute no-
thing in forming the variational equations (5.1L). Set-

. P & S E 4 .
ting V)" =V, - Q, 5 we write (noting that v = mu/ 2K)

| LK
__x*_- Bna( 1~ 3026}1)

Ve 1 1 (A+B-2C) (1~ 3c2,,) +
0

{552@5
1 (A-B) 2 ] a
- - c s Ue
75 ‘ 2<Pv 8!
Using the integration formulas in [6] (integrals
(314.02) and (310.02), respectively), we find that
¥ LK
1 «?), du = 1 }ﬂ dn?u du = e§ E (5.25)
L LK K
0]
R LK
1 ( ' ;‘x s, du = 1 (k%) sn2u du = 85(1— Els (g,26)
LK e n2 %2 K -
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where
: 2
eg = g; = B(é - 2Co(q) (a)
n] h%B - Q)
(5.27)
2 2
e; = _I_)‘_% = C('ZA()(]._ & ) 5 (b)
n w4 - Q)
and hence
— _ 2 .
3n (1- 3eqy) g(A+B-zc)(1 - Be§ B )
8(1 —e"'-’)3/ K
(5.28)
2 ’ 2
- (A-B) (q(fé -1 +(%3 = = / -
' L K« z ' —2 K j
¥oting (see [§]) the following relations
k=k(0<1;0<2), l’ll'—:nl(O(l:rO{Z)s
E=E(D(150(2)3 K=K('O{l:ﬁ‘(2)s (‘;}'sgfcf}
‘ < 2 Kz 1/2
c = N3 e+ Ap - 3 s . ¢ o
8y X ) Q———-—-—————-——z ) p) (/93+J )
X 2

*¥ —
we so= ti.u V (and Vg also) depends upon only four of

the ecr~unmical variabless 1in the form
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-~

R 1Y o

Ve‘ = e ()(1, 0(2; 0(33 ﬁB) ° (;*BO)

1

e differential equations which describe the first-
order, .secular variations of the o(k and %?k which ap-

pear in (5.1l) are

] L

O(l = O<2 = O’ (a)
o - %X
0(3 = }Ve s (b)
283
- TR K
ﬁl =- % , (c) (5.31)
9&& :
. oy XK
ﬁz ‘-—'—“?Ve 2 (d)
?cxz
e %X
AB —'? Ve D) (e)
2 X
3

exf

~7 the special case of a circular orbit, we have

. .2 : R .
e = G auin o= GM/ag, where a, represents the radius of

the « .. ar orbit. Equation (5.28) then takes the form
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VU 3\ (a+B-20) (1 - 3e° E)y &
e 8a3 [ 3%
a
O
(5.32)

2 2
- (A-B) (f_2_ - 1) + (53 -1) _E]J .
k2 2 2 K

If we enter (5.31) with ‘vg**as given in (5.32), then
equations (5.31) give the associated equations of motion
for the dynamical system (5.1).

For the special case, 5 ° =_Ei= 0,i.e., the orbital
plane is not precessing, .we find from (5.29) that

CeH"'CQ%=£ ? ES*,&})
A2

O<2=D(3= 0 and /l:ﬁzx/js

have seculayr variations. Under these circumstances; it

and it follows that (Xl

can be seen readily that the'éifferential equations (5.31)
reduce to the corresponding forms given by Hitzl and
Breakwell in [li]. Sinse the complete first-order, secu-
lar solutions,for the slternative variables (lﬂH,gﬁchﬁﬁg gt
¢ t,h), of the triaxial problem associated with a precess-
ing orbit will be given in later reports, the corresponéd-

ing first-order secular solutions for the q{k and /8 "

will not be given here. Equations (5.31) are, however,
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in a form in which they can be integrated readily. If
the reader is further interested in the secular solutions
for the canonical variables, he is referenced to [L ] for
the first-order secular solutions associated with a tri-
axial body moving in an elliptic, nonprecessing orbit.
The canonical variables used in [l ] are slightly dif-
ferent thén the canonical variables appearing in this
report. One set of canonical variables can readily be ob-
tained from the other by a simple transformation.

For a uniaxial body, we have k = 0, dn u = 1.

Equation (3.3(d)) reduces to

) 1/2
2
¢ - [Cl2ax  -h)
9' - 3 5:[53;&’ }
h3(A - )

hence ¢ ' 1is a function of c(l and & 5 only. Similarlys
sn u = 8in U, ¢cn u = cos u and from relations (3.2(z)) and

(3.4(a))s we find that
' =¢ é +u=- % + . (5.35)

Therefore, for the axisymmetric cases equation (5.2) takes
the form

2 2 2
V"= n (A - Q) (1‘309)(1’3¢9-)- (5
8(1 - aZ?/Z ' "

U1
»
Y
O~

Equation (5.36) is to be used in connection with equation
(5.31) in forming the variational equations for the motion

of a uniaxial rigid body.
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