729 research outputs found

    Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II

    Get PDF
    Acidification is an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are sources of acidification. Acidification causes a risk of damage to plant roots and a subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of acid stress and the buffer mechanisms of the soil. Acid stress is defined as the hydrogen ion input into the top soil. The buffer mechanisms counteract acidification by providing a sink for hydrogen ions. The concepts buffer rate and buffer capacity are used to quantify the buffer mechanisms. The model compares (i) the rate of the acid stress (annual amount) to the buffer rate, and (ii) the accumulated acid stress (over several years) to the buffer capacity. The comparisons produce an estimate of the soil acidity as the output. Since the first version in May 1984 several changes have been implemented following the advice of the experts. For aluminum and iron buffer ranges an equilibrium approach has been introduced. The pH of the silicate, cation exchange and upper aluminum buffer ranges is now a function of base saturation. In the current version of the model forests are assumed to absorb sulfur compounds more effectively than agricultural lands and, moreover, forests are assumed to grow on poor soil types rather than on the average soil type of a grid. The model system as a whole is now available for analyzing the impact of different emission scenarios. The soil acidification model assumes sulfur deposition estimates from the other submodels as input, and as output it computes the total area of forests in Europe with the estimated soil pH lower than any selected threshold value. Additionally it produces estimates of the acidity of European forest soils in a map format

    Acidification in Europe : A Simulation Model for Evaluating Control Strategies

    Get PDF
    RAINS (Regional Acidification Information and Simulation) is an integrated model of acidification in Europe designed as a tool for evaluating control strategies. It is currently sulfur-based, but is being expanded to include nitrogen species. Emphasis of the model is on the transboundary aspects of the acidification problem. Model computations are performed on a personal computer. Linked submodels are available for SO2 emissions, cost of control strategies, atmospheric transport of sulfur, forest soil and groundwater acidity, lake acidification, and the direct impact of SO2 on forests. The model can be used for scenario analysis, where the user prescribes a control strategy and then examines the cost and environmental consequences of this strategy, or for optimization analysis, in which the user sets cost and deposition goals, and identifies an "optimal" sulfur-reduction strategy. Preliminary use of the model has pointed to 1. the importance of examining long-term environmental consequences of control strategies, and 2. the cost advantages of a cooperative European sulfur-reduction program

    Sulfur deposition onto European forests: throughfall data and model estimates

    Get PDF
    The assessment of atmospheric sulfur deposition to forest is difficult because of its complex aerodynamic structure. Therefore, atmospheric deposition of sulfur to forest is often estimated by means of measuring throughfall fluxes onto the forest floor. In this paper, reported measurements of throughfall fluxes in European forests are analyzed. These fluxes are compared to deposition to bulk collectors located in nearby open land, to get an idea of the filtering efficiency of forests. In addition, fluxes are compared with deposition estimates from a long‐range transport model of air pollutants, linked to an emission generation model. According to reported measurements from 52 European conifer stands, we found that the sulfur flux was 3.8 ± 2.3 times greater onto the forest floor than onto precipitation collectors. In a similar data set of 13 deciduous stands this ratio was 2.3 ± 0.9. The ratio of throughfall flux to model estimate was 1.8 ± 0.9 in coniferous stands and 0.9 ± 0.3 in deciduous stands. For sites that are located in moderately to highly sulfur polluted areas, it is assumed that throughfall fluxes give a good estimation of the atmospheric sulfur deposition. We conclude that (1) sulfur deposition to forests is 1.5 to 6 times higher than deposition to smooth receptor surfaces due to an efficient filtering by the forest canopy, (2) average annual sulfur deposition at a given location is 50–100% greater on conifers than on deciduous trees, (3) the existing European scale model that links sulfur deposition to the pollution generation processes is quite accurate as far as deciduous forests are concerned, and (4) the model underestimates deposition to coniferous forest

    Acidification of Forest Soils: Model Development and Application for Analyzing Impacts of Acidic Deposition in Europe

    Get PDF
    Acidification is considered as an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known as sources of acidification. Acidification causes the risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of the acid stress and the buffer mechanisms of the soil. Acid stress is defined as the hydrogen ion input into the top soil. The buffer mechanisms counteract acidification by providing a sink for hydrogen ions. The concepts 'buffer rate' and 'buffer capacity' are used to quantify the buffer mechanisms. The model compares (i) the rate of the acid stress (annual amount) to the buffer rate, and (ii) the accumulated acid stress (over several years) to the buffer capacity. These two types of comparisons produce an estimate of the soil pH as the output. The model was incorporated into a model system for analyzing the acidic deposition problem in Europe. The data on acid stress, entering the soils, was obtained from other submodels which link information on energy production, pollutant emission, pollutant transport, and pollutant deposition. Data on buffer rate and buffer capacity were collected from soil maps and geological maps. The model system as a whole is now available for analyzing different emission scenarios. The soil acidification model assumes sulfur deposition estimates from the other submodels as the input, and as the output it produces estimates of the pH of European forest soils in a map format. Additionally it computes the total area of forests in Europe with the estimated soil pH lower than any selected threshold value. Sources of uncertainty of the soil acidification model are listed and briefly evaluated

    Acidification of Forest Soils

    Get PDF
    Acidification is considered to be an unfavourable process in forest soil. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known sources of acidification. Acidification causes a risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In 1-year time steps the model calculates the soil pH as a function of the acid stress and the buffer mechanisms of the soil. Acid stress is defined as the hydrogen ion input into the top soil. The buffer mechanisms counteract acidification by providing a sink for hydrogen ions. The concepts "buffer rate" and "buffer capacity" are used to quantify the buffer mechanisms. The model compares (a) the rate of acid stress (annual amount) with the buffer rate, and (b) the accumulated acid stress (over several years) with the buffer capacity. These two comparisons give an estimate of the oil acidity. The model was incorporated into the Regional Acidification INformation and Simulation (RAINS) model system of IIASA for analyzing the acidic deposition problem in Europe. This system links information on energy production, pollutant emission, pollutant transport, and pollution deposition. The data on acid stress entering the soils was obtained from other submodels. Data on buffer rate and buffer capacity were collected from soil maps and geological maps. The model system as a whole is now available for analyzing the impact of different emission scenarios. The soil acidification model assumes sulfur deposition estimates from the other submodels as input, and as output it produces estimates of the acidity of European forest soils in a map format. Additionally it computes the total area of forests in Europe with the estimated soil pH lower than any selected threshold value. Sources of uncertainty in the soil acidification are listed and briefly evaluated

    A method for estimating above-ground biomass in Phragmites stands

    Get PDF
    The method involves measuring the shoot height distribution of the Phragmites australis population. Shoot height is transformed to shoot dryweight by means of an empirical model. Summing the converted dry weight of all the shoots gives an approximation of the yield

    Comparison of phosphor screen autoradiography and micro-pattern gas detector based autoradiography for the porosity of altered rocks

    Get PDF
    This study aims to further develop the C-14-PMMA porosity calculation method with a novel autoradiography technique, the Micro-pattern gas detector autoradiography (MPGDA). In this study, the MPGDA is compared with phosphor screen autoradiography (SPA). A set of rock samples from Martinique Island exhibiting a large range of connected porosities was used to validate the MPGDA method. Calculated porosities were found to be in agreement with ones from the SPA and the triple-weight method (TW). The filmless nature of MPGDA as well as straightforward determination of C-14 radioactivity from the source rock makes the porosity calculation less uncertain. The real-time visualization of radioactivity from C-14 beta emissions by MPGDA is a noticeable improvement in comparison to SPA.Peer reviewe

    Determining Crack Aperture Distribution in Rocks Using the C-14-PMMA Autoradiographic Method : Experiments and Simulations

    Get PDF
    Because cracks control the global mechanical and transport properties of crystalline rocks, it is of a crucial importance to suitably determine their aperture distribution, which evolves through alteration processes and rock weathering. Due to the high variability of crack networks in rocks, a multiscale approach is needed. The C-14-PMMA (polymethylmethacrylate) method was developed to determine crack apertures using a set of artificial crack samples with different controlled apertures and tilt angles and also using Monte Carlo simulations. The experiments and simulations show the same result: the estimation of apparent aperture w(A) was successful regardless of tilt angle, even if the estimates are less accurate for low tilt angles (Peer reviewe

    Mobility of daughter elements of U-238 decay chain during leaching by In Situ Recovery (ISR) : New insights from digital autoradiography

    Get PDF
    In highly permeable sedimentary rock formations, U extraction by in-situ leaching techniques (ISR - In-Situ Recovery) is generally considered to have a limited environmental impact at ground level. Significantly, this method of extraction produces neither mill tailings nor waste rocks. Underground, however, the outcome for U-238 daughter elements in aquifers is not well known because of their trace concentrations in the host rocks. Thus, understanding the in-situ mobility of these elements remains a challenge. Two samples collected before and after six months of ISR experiments (Dulaan Uul, Mongolia) were studied with the help of a digital autoradiography technique (DA) of alpha particles, bulk alpha spectrometry, and complementary petrographic observation methods. These techniques demonstrate that before and after leaching, the radioactivity is concentrated in altered and microporous Fe-Ti oxides. Most of the daughter elements of U remain trapped in the rock after the leaching process. DA confirms that the alpha activity of the Fe-Ti oxides remains high after uranium leaching, and the initial secular equilibrium of the U-238 series for Th-230 to Po-210 daughter elements (including Ra-226) of the fresh rocks is maintained after leaching. While these findings should be confirmed by more systematic studies, they already identify potential mechanisms explaining why the U-daughter concentrations in leaching water are low.Peer reviewe

    Understanding the formation of deep eutectic solvents: betaine as a universal hydrogen bond acceptor

    Get PDF
    © 2020 Wiley-VCH GmbH The mechanism of formation of betaine-based deep eutectic solvents (DES) is presented for the first time. Due to its polarity unbalance, it was found that betaine displays strong negative deviations from ideality when mixed with a variety of different organic substances. These results pave the way for a comprehensive design of novel deep eutectic solvents. A connection to biologically relevant systems was made using betaine (osmolyte) and urea (protein denaturant), showing that these two compounds formed a DES, the molecular interactions of which were greatly enhanced in the presence of water.This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES, and CIMO-Mountain Research Center, UIDB/00690/2020, financed by national funds through the FCT/MEC and when appropriate cofinanced by FEDER under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio
    • 

    corecore