631 research outputs found

    Analysis and modeling of CLBG using the transfer matrix

    Get PDF
    Gratings in optical fibers have been increasingly used in a variety of applications such as sensors and Telecomm. Depending on perturbation separation, they are classified as: fiber Bragg gratings (FBG), and long period gratings (LPG), whose each spectral output offer advantages for certain applications. Nowadays there is a great interest in the study of arrays formed by the combination of long period gratings and Bragg gratings in cascade (CLBG), where the propagation modes of the core and the cladding propagate in the Bragg grating after they propagate in the LPG. In this work, analysis and modeling of Cascaded Long Bragg Gratings using the Transfer Matrix method was performed for the case of two gratings in series along one fiber. We analyzed the variation of the FWHM of the reflectance and transmittance spectra for different values of the difference of the refractive indexes of the core and the perturbation of the grating, using the typical core refractive index of an SMF-28 as reference value. For smaller index difference a narrow intensity peak was observed. After the number of perturbations was varied, when there is a greater number of perturbations in the grating, there is greater intensity in reflectance. However, as our results show, this dependence is not a linear function. The results were obtained under the maximum-reflectivity condition (tuned) for each single grating. The development of the mathematical model, the results of the simulation and the analysis of results are part of the development of the present work11103SPIE Optical engineering + applications - Optical modeling and system alignmentAuthors are grateful to UAM-Azcapotzalco, CONACYT, University of Twente and UNICAMP for their suppor

    Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept

    Full text link
    We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactorsand the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40\,cm long gas cell placed in the beam path of the Aries 40\,m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS,CS, SO2 (<1E-03 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.Comment: Accepted for publication in Astronomy and Astrophysics in September 21, 2017. 16 pages, 18 figure

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Mechanical and liquid phase exfoliation of cylindrite: A natural van der Waals superlattice with intrinsic magnetic interactions

    Get PDF
    We report the isolation of thin flakes of cylindrite, a naturally occurring van der Waals superlattice, by means of mechanical and liquid phase exfoliation. We find that this material is a heavily doped p-Type semiconductor with a narrow gap (&lt;0.85 eV) with intrinsic magnetic interactions that are preserved even in the exfoliated nanosheets. Due to its environmental stability and high electrical conductivity, cylindrite can be an interesting alternative to the existing 2D magnetic materials

    Constraining the pˉ/p\bar{p}/p Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC

    Get PDF
    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the pˉ/p\bar{p}/p fraction, which in the absence of any direct measurements, provide the tightest available constraints of 1%\sim1\% on the antiproton fraction for energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review
    corecore