628 research outputs found

    Accounting students' IT applicaton skills over a 10-year period

    Get PDF
    This paper reports on the changing nature of a range of information technology (IT) application skills that students declare on entering an accounting degree over the period from 1996 to 2006. Accounting educators need to be aware of the IT skills students bring with them to university because of the implications this has for learning and teaching within the discipline and the importance of both general and specific IT skills within the practice and craft of accounting. Additionally, IT skills constitute a significant element within the portfolio of employability skills that are increasingly demanded by employers and emphasized within the overall Higher Education (HE) agenda. The analysis of students' reported IT application skills on entry to university, across a range of the most relevant areas of IT use in accounting, suggest that their skills have continued to improve over time. However, there are significant differential patterns of change through the years and within cohorts. The paper addresses the generalizability of these findings and discusses the implications of these factors for accounting educators, including the importance of recognising the differences that are potentially masked by the general increase in skills; the need for further research into the changing nature, and implications, of the gender gap in entrants' IT application skills; and the low levels of entrants' spreadsheet and database skills that are a cause for concern

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Removal of AU Bias from Microarray mRNA Expression Data Enhances Computational Identification of Active MicroRNAs

    Get PDF
    Elucidation of regulatory roles played by microRNAs (miRs) in various biological networks is one of the greatest challenges of present molecular and computational biology. The integrated analysis of gene expression data and 3′-UTR sequences holds great promise for being an effective means to systematically delineate active miRs in different biological processes. Applying such an integrated analysis, we uncovered a striking relationship between 3′-UTR AU content and gene response in numerous microarray datasets. We show that this relationship is secondary to a general bias that links gene response and probe AU content and reflects the fact that in the majority of current arrays probes are selected from target transcript 3′-UTRs. Therefore, removal of this bias, which is in order in any analysis of microarray datasets, is of crucial importance when integrating expression data and 3′-UTR sequences to identify regulatory elements embedded in this region. We developed visualization and normalization schemes for the detection and removal of such AU biases and demonstrate that their application to microarray data significantly enhances the computational identification of active miRs. Our results substantiate that, after removal of AU biases, mRNA expression profiles contain ample information which allows in silico detection of miRs that are active in physiological conditions

    miR-22 Forms a Regulatory Loop in PTEN/AKT Pathway and Modulates Signaling Kinetics

    Get PDF
    Background: The tumor suppressor PTEN (phosphatase and tensin homolog) is a lipid phosphatase that converts PIP3 into PIP2 and downregulates the kinase AKT and its proliferative and anti-apoptotic activities. The FoxO transcription factors are PTEN downstream effectors whose activity is negatively regulated by AKT-mediated phosphorylation. PTEN activity is frequently lost in many types of cancer, leading to increased cell survival and cell cycle progression. Principal Findings: Here we characterize the widely expressed miR-22 and report that miR-22 is a novel regulatory molecule in the PTEN/AKT pathway. miR-22 downregulates PTEN levels acting directly through a specific site on PTEN 39UTR. Interestingly, miR-22 itself is upregulated by AKT, suggesting that miR-22 forms a feed-forward circuit in this pathway. Timeresolved live imaging of AKT-dependent FoxO1 phosphorylation revealed that miR-22 accelerated AKT activity upon growth factor stimulation, and attenuated its down regulation by serum withdrawal. Conclusions: Our results suggest that miR-22 acts to fine-tune the dynamics of PTEN/AKT/FoxO1 pathway

    Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation

    Get PDF
    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-g production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses

    Integrated analysis of microRNA and mRNA expression profiles in physiological myelopoiesis: role of hsa-mir-299-5p in CD34+ progenitor cells commitment

    Get PDF
    Hematopoiesis entails a series of hierarchically organized events that proceed throughout cell specification and terminates with cell differentiation. Commitment needs the transcription factors' effort, which, in concert with microRNAs, drives cell fate and responds to promiscuous patterns of gene expression by turning on lineage-specific genes and repressing alternate lineage transcripts. We obtained microRNA profiles from human CD34+ hematopoietic progenitor cells and in vitro differentiated erythroblasts, megakaryoblasts, monoblasts and myeloblast precursors that we analyzed together with their gene expression profiles. The integrated analysis of microRNA–mRNA expression levels highlighted an inverse correlation between microRNAs specifically upregulated in one single-cell progeny and their putative target genes, which resulted in downregulation. Among the upregulated lineage-enriched microRNAs, hsa-miR-299-5p emerged as having a role in controlling CD34+ progenitor fate, grown in multilineage culture conditions. Gain- and loss-of-function experiments revealed that hsa-miR-299-5p participates in the regulation of hematopoietic progenitor fate, modulating megakaryocytic-granulocytic versus erythroid-monocytic differentiation

    MicroRNAs can generate thresholds in target gene expression

    Get PDF
    MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.National Institutes of Health (U.S.). Director's Pioneer Award (1DP1OD003936)National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)United States. Public Health Service (Grant R01-CA133404)United States. Public Health Service (Grant R01-GM34277)National Cancer Institute (U.S.) (PO1-CA42063)National Cancer Institute (U.S.) Cancer Center Support (Grant P30-CA14051)Howard Hughes Medical Institute. Predoctoral FellowshipCleo and Paul Schimmel Foundation. FellowshipNatural Sciences and Engineering Research Council of Canada PGS Scholarshi

    The Genomic Analysis of Erythrocyte microRNA Expression in Sickle Cell Diseases

    Get PDF
    BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases
    • …
    corecore