8,596 research outputs found

    Isotropic, Nematic and Smectic A Phase Behaviour in a Fictitious Field

    Full text link
    Phase behaviours of liquid crystals under external fields, conjugate to the nematic order and smectic order, are studied within the framework of mean field approximation developed by McMillan. It is found that phase diagrams, of temperature vs interaction parameter of smectic A order, show several topologically different types caused by the external fields. The influences of the field conjugate to the smectic A phase, which is fictitious field, are precisely discussed.Comment: To be published in J. Phys. Soc. Jpn. vol.73 No.

    Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase

    No full text
    The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3' end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs' lifetime.We would like to thank ... the MPIB cryo-EM, and core facilities ..

    Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models

    Get PDF
    The variational reduced density matrix theory has been recently applied with great success to models within the truncated doubly occupied configuration interaction space, which corresponds to the seniority zero subspace. Conservation of the seniority quantum number restricts the Hamiltonians to be based on the SU(2) algebra. Among them there is a whole family of exactly solvable Richardson-Gaudin pairing Hamiltonians. We benchmark the variational theory against two different exactly solvable models, the Richardson-Gaudin-Kitaev and the reduced BCS Hamiltonians. We obtain exact numerical results for the so-called PQGT N-representability conditions in both cases for systems that go from 10 to 100 particles. However, when random single-particle energies as appropriate for small superconducting grains are considered, the exactness is lost but still a high accuracy is obtained.Fil: Rubio García, A.. Instituto de Estructura de la Materia; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Capuzzi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dukelsky, J.. Consejo Superior de Investigaciones Científicas; España. Instituto de Estructura de la Materia; Españ

    Molecular Hydrogen Emission Lines in Far Ultraviolet Spectroscopic Explorer Observations of Mira B

    Full text link
    We present new Far Ultraviolet Spectroscopic Explorer (FUSE) observations of Mira A's wind-accreting companion star, Mira B. We find that the strongest lines in the FUSE spectrum are H2 lines fluoresced by H I Lyman-alpha. A previously analyzed Hubble Space Telescope (HST) spectrum also shows numerous Lyman-alpha fluoresced H2 lines. The HST lines are all Lyman band lines, while the FUSE H2 lines are mostly Werner band lines, many of them never before identified in an astrophysical spectrum. We combine the FUSE and HST data to refine estimates of the physical properties of the emitting H2 gas. We find that the emission can be reproduced by an H2 layer with a temperature and column density of T=3900 K and log N(H2)=17.1, respectively. Another similarity between the HST and FUSE data, besides the prevalence of H2 emission, is the surprising weakness of the continuum and high temperature emission lines, suggesting that accretion onto Mira B has weakened dramatically. The UV fluxes observed by HST on 1999 August 2 were previously reported to be over an order of magnitude lower than those observed by HST and the International Ultraviolet Explorer (IUE) from 1979--1995. Analysis of the FUSE data reveals that Mira B was still in a similarly low state on 2001 November 22.Comment: 23 pages, 6 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    Crossover Phenomena in the One-Dimensional SU(4) Spin-Orbit Model under Magnetic Fields

    Full text link
    We study the one-dimensional SU(4) exchange model under magnetic fields, which is the simplest effective Hamiltonian in order to investigate the quantum fluctuations concerned with the orbital degrees of freedom in coupled spin-orbit systems. The Bethe ansatz approaches and numerical calculations using the density matrix renormalization group method are employed. The main concern of the paper is how the system changes from the SU(4) to the SU(2) symmetric limit as the magnetic field is increased. For this model the conformal field theory predicts an usual behavior: there is a jump of the critical exponents just before the SU(2) limit. For a finite-size system, however, the orbital-orbital correlation functions approach continuously to the SU(2) limit after interesting crossover phenomena. The crossover takes place in the magnetization range of 1/3 \sim 1/2 for the system with 72 sites studied in this paper.Comment: 8 pages, 6 Postscript figures, REVTeX, submitted to Phys. Rev.

    Controllable pi junction with magnetic nanostructures

    Get PDF
    We propose a novel Josephson device in which 0 and π\pi states are controlled by an electrical current. In this system, the π\pi state appears in a superconductor/normal metal/superconductor junction due to the non-local spin accumulation in the normal metal which is induced by spin injection from a ferromagnetic electrode. Our proposal offers not only new possibilities for application of superconducting spin-electronic devices but also the in-depth understanding of the spin-dependent phenomena in magnetic nanostructures.Comment: 4 pages, 3 figure

    Collective Charge Excitation in a Dimer Mott Insulating System

    Full text link
    Charge dynamics in a dimer Mott insulating system, where a non-polar dimer-Mott (DM) phase and a polar charge-ordered (CO) phase compete with each other, are studied. In particular, collective charge excitations are analyzed in the three different models where the internal-degree of freedom in a dimer is taken into account. Collective charge excitation exists both in the non-polar DM phase and the polar CO phase, and softens in the phase boundary. This mode is observable by the optical conductivity spectra where the light polarization is parallel to the electric polarization in the polar CO phase. Connections between the present theory and the recent experimental results in kappa-(BEDT-TTF)2Cu2(CN)3 are discussed.Comment: 5 pages, 4 figure

    Effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model

    Full text link
    We study the effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model. We allow the exchange in spin (J1J_1) and orbital (J2J_2) channel to be different and thus reduce the symmetry to SU(2) \otimes SU(2). A magnetic field hh along the SzS^z direction is also applied. Using the formalism developped by Azaria et al we extend their analysis of the isotropic J1=J2J_1=J_2, h=0 case and obtain the low-energy effective theory near the SU(4) point in the asymmetric case. An accurate analysis of the renormalization group flow is presented with a particular emphasis on the effect of the anisotropy. In zero magnetic field, we retrieve the same qualitative low-energy physics than in the isotropic case. In particular, the massless behavior found on the line J1=J2>K/4J_1=J_2>K/4 extends in a large anisotropic region. We discover though that the anisotropy plays its trick in allowing non trivial scaling behaviors of the physical quantities. When a magnetic field is present the effect of the anisotropy is striking. In addition to the usual commensurate-incommensurate phase transition that occurs in the spin sector of the theory, we find that the field may induce a second transition of the KT type in the remaining degrees of freedom to which it does not couple directly. In this sector, we find that the effective theory is that of an SO(4) Gross-Neveu model with an h-dependent coupling that may change its sign as h varies.Comment: 14 pages, 5 Figs, added referenc
    corecore