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Abstract

The variational reduced density matrix theory has been recently applied with

great success to models within the truncated doubly-occupied configuration interac-

tion space, which corresponds to the seniority zero subspace. Conservation of the se-

niority quantum number restricts the Hamiltonians to be based on the SU(2) algebra.

Among them there is a whole family of exactly solvable Richardson-Gaudin pairing

Hamiltonians. We benchmark the variational theory against two different exactly solv-

able models, the Richardson-Gaudin-Kitaev and the reduced BCS Hamiltonians. We

obtain exact numerical results for the so-called PQGT N -representability conditions

in both cases for systems that go from 10 to 100 particles. However, when random
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single-particle energies as appropriate for small superconducting grains are considered,

the exactness is lost but still a high accuracy is obtained.

1 Introduction

One of the main problems in many-body quantum mechanics, which includes condensed

matter, nuclear physics, and quantum chemistry, is the so-called exponential wall problem,1

namely, the exponential growth of the dimension of the Hilbert space with the number of

particles composing the studied system. A complete diagonalization of the corresponding

Hamiltonian in the many-particle space provides the exact answer but at a prohibitively

expensive computational cost. Therefore, research efforts have been focused on the devel-

opment of approximate methods capturing the relevant degrees of freedom present in the

wavefunction at a feasible computational cost, i.e., with a polynomial increase.

A great variety of such approximate methods that have been developed over the years can

be broadly classified into approximations that improve over a reference state and variational

theories. In the former case, a standard approach is to start from a mean-field reference

state and improve on this by adding perturbative corrections2 or excitations with increas-

ing complexity within Coupled Cluster Theory.3,4 However, these methods break down in

strong correlation regimes where multi-reference approximations are needed. New variational

methods overcoming this issue were developed in the last decades. For instance, variational

algorithms like tensor-network-state approaches,5–8 variational Monte Carlo methods,9–12 or

stochastic techniques13–16 can be made, in principle, as accurate as the exact diagonaliza-

tions while extending its computational limits beyond. Some of these many-body methods

were recently benchmarked in the hydrogen chain.17

A very different approach to tackle the exponential wall problem that is applicable to any

correlation regime concentrates on the second-order reduced density matrix (2RDM),18,19

while dispensing with the wavefunction altogether. The 2RDM is a much more compact
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object than the wavefunction and it holds all the necessary information to evaluate the ex-

pectation values of one- and two-particle observables of physical interest. As the energy

of any pairwise-interacting system can be written as an exact but simple linear function

of the 2RDM, it can be used to variationally optimize this matrix at polynomial cost.20

This optimization should be constrained to the class of 2RDMs that can be derived from a

wavefunction (or an ensemble of wavefunctions), the so-called N -representable 2RDMs.21,22

Since the complete characterization of this class of 2RDMs is known to be a quantum Mer-

lin Arthur (QMA) complete problem,23 one has to use an incomplete set of necessary but

not (in general) sufficient constraints on the 2RDM. The optimization thus finds a lower

bound to the exact ground-state energy and an approximation to the exact ground-state

2RDM. Such an approach, known as the variational second-order reduced density matrix

(v2RDM) method has been applied with different degrees of success in quantum-chemistry

problems,24–27 nuclear-physics,28,29 and condensed-matter.30–32

Recently, the computational efficiency of the v2RDM method has been substantially im-

proved for systems whose states can be accurately described in terms of doubly-occupied

single-particle states only. This lies at the heart of the doubly-occupied configuration inter-

action (DOCI) method, widely used in quantum chemistry to reduce the dimension of the

configuration interaction Hilbert space. DOCI corresponds to the subspace of the Hilbert

space of seniority zero, where the seniority quantum number33 counts the number of unpaired

particles. It has been recognized that the DOCI subspace captures most of the static corre-

lations, serving as the first rung on a seniority ladder leading to the exact full configuration

interaction (CI) solution.34–37 The assumptions in DOCI drastically simplify the structure

of the 2RDM38,39 and reduce the scaling of the v2RDM method40–42 while, expectedly, re-

tain most of the correlation. Several applications of the v2RDM for seniority nonconserving

Hamiltonians were already implemented and their accuracy tested against exact diagonal-

izations for small systems.40,42,43 Here we will take advantage of the seniority-zero nature

of DOCI space that restricts the Hamiltonians to be seniority conserving and therefore, to
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be based on the SU(2) algebra. An important class of SU(2) Hamiltonians are the pairing

Hamiltonians, where the fundamental physics lies in the specific form of the paired states.

The quantum integrable and exactly solvable Richardson-Gaudin pairing models44–46 are

ideal Hamiltonians to test the performance of the v2RDM method within the DOCI space.

In this paper, we will benchmark the method for two different integrable Richardson-Gaudin

models: the Richardson-Gaudin-Kitaev model47 describing a chain of spinless fermions with

p-wave pairing, and the constant pairing or reduced BCS Hamiltonian with uniform48 and

random single-particle energies.49 We will also explore the behavior of the method for in-

creasingly large systems addressing its extensivity properties

2 Theory

In second quantization, an N -particle Hamiltonian with pairwise interactions can be written

as50

H =
∑
ij

tijc
†
icj +

1

4

∑
ijkl

Vijklc
†
ic
†
jclck (1)

where t and V are the one-body energy and the two-body interaction terms, respectively. c†i

and cj are the standard fermion creation and annihilation operators in a given orthonormal

single-particle basis {i, j, k, l, ...}.

According to Eq. (1), the ground-state energy can be expressed solely in terms of the

second-order reduced density matrix, 2RDM, 2Γ18

E0[2Γ] =
1

4

∑
ijkl

H
(2)
ijkl

2Γijkl (2)

where

2Γijkl = 〈ψ|c†ic†jclck|ψ〉 (3)
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and

H
(2)
ijkl =

1

N − 1
(tikδjl − tjkδil − tilδjk + tjlδik) + Vijkl (4)

is the two-particle reduced Hamiltonian with |ψ〉 the ground-state wavefunction and N the

number of particles.

The idea behind the variational 2RDM methodology is to minimize the energy func-

tional (2) by varying the coefficients of 2Γ. However, direct application of this procedure

yields unrealistic energies19,20,51 as 2Γ must be constrained to the class of N -representable

2RDMs.22 N -representability of a 2RDM implies there must exist an N -particle wavefunc-

tion (or an ensemble of wavefunctions) from where it derives. The necessary and sufficient

conditions to assure the N -representability of a pRDM are formally known:52–54 A pRDM is

N -representable if and only if for every p-body Hamiltonian Hξ the following inequality is

satisfied

1

(p!)2

∑
i1i2···i2p

H
(p)
ξ i1i2···i2p

pΓi1i2···i2p ≥ E0(Hξ) (5)

with H
(p)
ξ and E0(Hξ) being the p-particle reduced Hamiltonian and the exact ground-state

energy of Hξ, respectively. Unfortunately, this theorem cannot be used in practice since it

would require knowledge of the ground-state energy of every possible p-body Hamiltonian

Hξ. However, it can be relaxed using a set of Hamiltonians for which a lower bound for the

ground-state energy is known. This is the case of the group of all semidefinite Hamiltonians,

which are completely defined by its extreme elements

H = B†B (6)

yielding the well-known P , Q and G two-index N -representability conditions22,52 on the 2Γ

matrix if B is restricted to the forms B =
∑

ij pijcicj, B =
∑

ij qijc
†
ic
†
j, and B =

∑
ij gijc

†
icj,

respectively. It has been shown that these conditions are the necessary and sufficient condi-

tions to assure the N -representability for one-body Hamiltonians,22,55 as well as for two-body
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Hamiltonians with an exact antisymmetric geminal power (AGP) ground state.55,56 We will

demonstrate this last assertion analytically and numerically in Section 3.1 for the case of the

Richardson-Gaudin-Kitaev Hamiltonian.

Hamiltonians of the class

H = B†B +BB† (7)

with B =
∑

ijk t
1
ijkc
†
ic
†
jc
†
k, and B =

∑
ijk t

2
ijkc
†
ic
†
jck yield the T1 and T2 three-index N -

representability conditions27,57,58 coming from the 3RDM on the 2Γ matrix, respectively.

As these conditions are in general necessary but not sufficient, the v2RDM will always find

a lower bound to the exact ground-state energy and an approximation to the exact ground-

state 2RDM.

In this work we will focus our attention on Hamiltonians with pairing interactions in

the seniority zero subspace. Assuming time-reversal symmetry, the single-particle levels are

doubly degenerate in the spin degree of freedom. The seniority quantum number classifies

the Hilbert space into subspaces with a given number of singly occupied levels. The most

general pairing Hamiltonian conserving seniority is

H =
1

2

L∑
i=1

εiNi +
L∑

ij=1

Vij c
†
ic
†
ī
cj̄cj (8)

where εi are the energies of L doubly degenerate single-particle levels, Ni = c†ici + c†
ī
cī is

the number operator, and Vij is the pairing interaction. The (i, ī) pair defines the pairing

scheme, which can involve two particles with either opposite spins (i ↑, i ↓), momenta (i,−i),

or in general any classification of conjugate quantum numbers in doubly degenerate single-

particle levels. For these Hamiltonians the seniority number is an exact quantum number, as

unpaired particles do not interact with the rest of the system and the pairing Hamiltonian

does not allow for pair breaking. The Hamiltonian thus becomes block diagonal in sectors

labeled by the seniority quantum number.

The pairing Hamiltonian (8) is based on the SU(2) pair algebra with generators

6



K+
i = c†ic

†
ī

=
(
K−i
)†
, Kz

i =
1

2
(Ni − 1) (9)

and commutation relations

[
K+
i , K

−
j

]
= 2δijK

z
i ,
[
Kz
i , K

±
j

]
= ±δijK±i (10)

We note that in the seniority zero subspace Ni = 2K+
i K

−
i and therefore, the Hamiltonian

(8) can be written in terms of the ladder SU(2) operators as

H =
L∑

ij=1

JijK
+
i K

−
j (11)

where Jij = δijεi + Vij. The ground-state energy is thus given by

E0 =
L∑

ij=1

JijPij (12)

where the P matrix is

Pij = 〈ψ|c†ic†icjcj|ψ〉 = 〈ψ|K+
i K

−
j |ψ〉 (13)

This matrix together with the D matrix

Dij =
1

4
〈ψ|NiNj|ψ〉 = 〈ψ|

(
Kz
i +

1

2

)(
Kz
j +

1

2

)
|ψ〉 (14)

define the seniority blocks of the 2Γ matrix. Notice that the diagonal elements of both

matrices are equal (Dii = Pii). According to these definitions, it follows that the P and D
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matrices are hermitian and fulfill

L∑
i=1

Pii =
L∑
i=1

Dii = M (15)

L∑
j=1

Dij = MPii (16)

where M is the number of particle pairs in a system with L doubly degenerate single-particle

levels and total 〈ψ|Kz|ψ〉 = M − L
2
. The P , Q, G, T1 and T2 N -representability conditions

can thus be written in terms of the seniority blocks of the 2RDM as,38–43

• The P condition:

P � 0 (17)

Dij ≥ 0, ∀i, j (18)

• The Q condition:

Q � 0 (19)

qij ≥ 0, ∀i, j (20)

where

Qij = Pij + δij(1− 2Pii) (21)

qij = Dij + 1− Pii − Pjj (22)

• The G condition:

Gij � 0, ∀i > j (23)

g � 0 (24)

8



where

Gij =

 Pii −Dij −Pij
−Pji Pjj −Dij

 (25)

gij = Dij (26)

• The T1 condition:

T i1 � 0, ∀i (27)

t1 ijk ≥ 0, ∀i > j > k (28)

where

(T1)ijk = δjk(1− 2Pjj − Pii + 2Dij) + Pjk, ∀j, k 6= i (29)

t1 ijk = 1− Pii − Pjj − Pkk +Dij +Djk +Dki (30)

• The T2 condition:

T i2 � 0, ∀i (31)

T ijk2 � 0, ∀i > j > k (32)

where

T i2 =


Djk −δjkPik Dik

−δjkPki δjk(Pii − 2Dik) + Pjk Pik

Dji Pji Pii

 (33)
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T ijk2 =


Pii −Dij −Dik +Djk Pij Pik

Pji Pjj −Dij −Djk +Dik Pjk

Pki Pkj Pkk −Dik −Djk +Dij


(34)

where the symbol � 0 denotes that a matrix is positive semidefinite.

The variational optimization of the 2RDM subject to conditions (15)-(34) can be for-

mulated as a semidefinite problem (SDP) in which the energy, being a linear function of

the 2RDM, is minimized over the intersection of a linear affine space and the convex cone

of block-diagonal positive semidefinite matrices.59–62 As discussed in,40–42 the SDP in the

seniority subspace computationally scales as O(L3) for the PQG conditions and as O(L4)

for the PQGT conditions. This will allow us to treat without excessive computational ef-

forts systems of sizes up to L = 100. In our numerical calculations we use the semidefinite

programming algorithm (SDPA) code.63,64 This code solves semidefinite problems at several

precision levels by means of the Mehrotra-type predictor-corrector primal-dual interior-point

method, providing ground-state energies and the corresponding 2RDM.

We programmed our v2RDM method as a dual problem in the SDPA code, which does

not allow for the equality constraints (15)-(16). These are included by relaxing them into

inequality constraints with a sufficiently small summation error δ.27,65 In our work we have

set δ = 10−7, which effectively fixes the precision of the ground-state energies.

3 Richardson-Gaudin integrable models

The Richardson-Gaudin (RG) models are based on a set of integrals of motion (IM) or

quantum invariants that are linear and quadratic combinations of the generators of the

SU(2) algebra. By requiring the IM to commute with the total spin operators Kz =
∑

iK
z
i ,

the most general expression for the IM is
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Ri = Kz
i +G

∑
j(6=i)

Xij

2

(
K+
i K

−
j +K+

j K
−
i

)
+ ZijK

z
iK

z
j (35)

where Xij and Zij are antisymmetric matrices and G is the pairing strength. The operators

Ri must commute among themselves to constitute a set of IM. Imposing these conditions

leads to two families of integrable models:

1. The hyperbolic or XXZ family

Xij =
2ηiηj
η2
i − η2

j

, Zij =
η2
i + η2

j

η2
i − η2

j

(36)

2. The rational or XXX family

Xij = Zij =
1

η2
i − η2

j

(37)

where the η′s are an arbitrary set of real parameters.

The common eigenstates of IM (35) are determined by the solution of the set of M

non-linear coupled RG equations

1 +
G

2

L∑
i=1

Ziα −G
M∑
β 6=α

Zβα = 0, ∀ α = 1, · · · ,M (38)

with Ziα = Z (η2
i , Eα) in terms of the M spectral parameters Eα.

Defining the new L variables

Λi =
M∑
α=1

Z
(
η2
i , Eα

)
(39)

we can write the RG equations as a set of L coupled quadratic equations66 in the Λ variables

Λ2
i = M(L−M)C − 2

G
Λi +

L∑
j 6=i

Zij (Λi − Λj) (40)
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where C is a constant that depends on the Gaudin algebra, 0 for the rational family and

−1 for the hyperbolic family. This new system of equations is free of the divergences that

plague the original set of RG equations (38), and it can be solved numerically with the

Levenberg-Marquardt algorithm. Once we have determined the set of Λi for a particular

eigenstate, the eigenvalues of the IM are

ri =
1

2

(
−1−GΛi +

G

2

L∑
j 6=i

Zij

)
(41)

If the Hamiltonian is an arbitrary linear combination of the IM, H =
∑L

i=1 εiRi, the corre-

sponding eigenvalue is

E =
L∑
i=1

εiri (42)

3.1 The Richardson-Gaudin-Kitaev model

The Richardson-Gaudin-Kitaev (RGK) model47 is a variation of the celebrated Kitaev wire67

proposed as a toy model to understand topological superconductivity. While the Kitaev wire

is a non-number-conserving one-body Hamiltonian for spinless fermions in a 1D chain, the

RGK Hamiltonian is two-body and number conserving. Moreover, it is exactly solvable for

closed boundary conditions, either periodic or antiperiodic. Hence, this interacting many-

body Hamiltonian allows to obtain precise answers for the characterization of topological

superconductivity.

The RGK Hamiltonian is a particular realization of the hyperbolic family of RG models

describing p-wave pairing68–70

H =
1

2

∑
i∈I+

εiNi −G
∑
ij∈I+

ηiηjc
†
ic
†
ī
cj̄cj (43)

where ηi = sin (i/2) and εi = η2
i , such that the one-body term describes near-neighbor hop-

pings in a 1D chain. For simplicity we will assume antiperiodic boundary conditions. In this
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case, the allowed values of i in a 1D chain of length 2L are I+ = {π, 3π, · · · , (2πL− π)} /(2L).

The complete set of eigenstates in the seniority zero subspace is given by a product pair

ansatz

|Ψ〉 =
M∏
α=1

(
L∑
i=1

ηi
εi − Eα

c†ic
†
ī

)
|0〉 (44)

where the set of M spectral parameters (pair energies) Eα are a particular solution of a set

of M non-linear coupled RG equations and |0〉 is the vacuum state.

The ground state solution has two critical values of G with peculiar properties: the

Moore-Read point GMR = 1
L−M+1

,71 and the Read-Green point GRG = 1
L−2M+2

.72

For the ground state solution at the Moore-Read point GMR, and independently of the

definition of the η′s, all pair energies Eα collapse at 0 energy (Eα = 0, ∀ α). Therefore,

the RGK ground state for GMR is a pair condensate also known as number projected BCS

(PBCS) wavefunction in nuclear physics or antisymmetric geminal power, AGP, in quantum

chemistry

|ΨMR〉 =

(
L∑
i=1

1

ηi
c†ic
†
ī

)M

|0〉 (45)

The PBCS or AGP wavefunction, being exact at GMR, will display important conse-

quences for the v2RDM approach. As mentioned above, the PQG conditions are sufficient

to produce the exact v2RDM result at this point. This statement can be independently

proven starting from the set of killers of an AGP wavefunction

Bij = ηjc
†
icj − ηic†jci (46)

such that

Bij |ΨMR〉 = 0 (47)
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from which the Moore-Read Hamiltonian derives as the positive semidefinite operator

HMR =
1

[2 (L+ 1)− 2M ]

∑
ij

B†ijBij (48)

=
1

2

∑
i

η2
iNi −

1

L−M + 1

∑
ij

ηiηjc
†
ic
†
i
cjcj (49)

with 0 ground-state energy.

0.0 0.5 1.0 1.5 2.0Gc

G/GMR

10−7

10−6

10−5

10−4

10−3

10−2

10−1

|E
−
E
ex
a
ct
|

PBCS

PQG
PQGT

0 1 2
G/GMR

−10

0

Ec

Figure 1: Absolute energy difference of v2RDM and PBCS with respect to the exact ground-
state energy of the RGK Hamiltonian at different interaction strengths for a system with
L = 50 doubly degenerate levels. The v2RDM results are computed with the PQG and the
PQGT conditions. Inset: exact correlation energy.

The Read-Green point GRG signals the topological quantum phase transition. In the

thermodynamic limit the scaled pairing strength is gRG = GRGL = 1/ (1− 2ρ) implying

that there is no phase transition for densities ρ ≥ 1/2. Since we are interested in testing the

accuracy of the v2RDM specifically around the Moore-Read point, we will consider systems

of different sizes at half filling for several values of the pairing strength in units of GMR.

In addition to the ground-state energies we will test another magnitude that characterizes
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the pair mixing across the Fermi level, the canonical gap defined as

∆c = G

L∑
i=1

ηi

√〈
c†ic
†
ī
cīci

〉
−
〈
c†ici
〉〈

c†
ī
cī

〉
= G

L∑
i=1

ηi
√
Pii (1− Pii) (50)

It turns out that ∆c coincides with the BCS gap ∆ when it is evaluated with a number

non-conserving BCS wavefunction. In this case the BCS gap equation reduces to

1

G
=

L∑
i=1

ηi√
(εi − µ)2 + η2

i ∆
2

, µ =
εM + εM+1

2
(51)

As a function of G the system has a phase transition from a metallic state characterized by

∆ = 0 to a superconducting state with finite gap. The critical value of G is obtained from

the gap equations as

Gc =

[∑
i

ηi
|εi − µ|

]−1

(52)

Even though BCS predicts a non-superconducting state for G < Gc (∆ = 0), for corre-

lated number conserving wavefunctions like PBCS or AGP the gap is always greater than

zero.73

We have now all the tools for testing the different variational approximations with the

exact solution of the RGK model. We start with a system of L = 50 doubly degenerate

levels at half filling corresponding to M = 25 fermion pairs. The size of the Hilbert space is

1.26×1014, well beyond the limits of an exact diagonalization. Note that for finite size systems

at half-filling, the Read-Green point lies at very large values of G, GRG = 1/2 as compared

to the Moore-Read point (GMR = 1/26). Therefore, we assume GMR as a characteristic

value of the pairing strength, at which PBCS and the PQG v2RDM approximations must

be exact. Thus, we will study the behavior of the different approximations as a function of
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0.0 0.5 1.0 1.5 2.0Gc

G/GMR

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

|∆
−

∆
ex
a
ct
|

PBCS

PQG
PQGT

0 1 2
G/GMR

0

1
∆

Figure 2: Absolute canonical gap difference of the v2RDM and the PBCS with respect to
the exact canonical gap of the RGK Hamiltonian at different interaction strengths. The
v2RDM results are computed with the PQG and the PQGT conditions. Computations are
for a system with L = 50 doubly degenerate levels. Inset: exact canonical gap.

G in units of GMR.

Fig. 1 shows the absolute value of the difference between the approximated and the exact

ground-state energy. We display here the absolute value in order to compare PBCS and

v2RDM. However, we should keep mind that this difference is positive for PBCS due to its

Ritz variational character, while it is negative for v2RDM because it provides lower bounds.

The inset displays the behavior of the correlation energy, which stays flat for weak pairing,

and starts to decrease linearly with G entering the superconducting region. The correlation

energy is defined as

Ec = 〈ψ|H|ψ〉 − 〈ψ(0)|H|ψ(0)〉 (53)

where |ψ(0)〉 is the ground state of the noninteracting Hamiltonian.

As it was expected, the PQG and PBCS are indeed exact at the Moore-Read point GMR.

While both approximations have a comparable accuracy in the weak coupling region, PBCS

is two orders of magnitude better in the superconducting region. In contrast, the addition

of constraints coming from the 3RDM in the PQGT approximation makes the formalism
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Figure 3: Absolute energy difference of the v2RDM with the PQGT conditions with respect
to the exact ground-state energy of the RGK Hamiltonian with different number of doubly
degenerate levels as specified in the legend)

numerically exact within the accuracy limit imposed by the semidefinite programming code

SDPA.

Fig. 2 shows the comparison of the canonical gap (50) computed with PBCS and the

v2RDM with the exact one. As the gap is not determined from a variational principle, we

plot the absolute value of the differences between approximated and exact gaps. Again,

the PBCS and PQG gaps are exact at the Moore-Read point, providing a second numerical

confirmation of the exactness of both approaches. The PQG approximation manages to

give a fairly good description of the gap but the PBCS again provides at least one order of

magnitude approximation better in the superconducting region. The computations with the

PQGT conditions give again a numerically exact approximation to the canonical gap. The

inset in the figure shows the behavior of the exact canonical gap, which remains small at

weak interactions due to pairing fluctuations, until it opens at around the critical interaction

strength Gc, where the system enters a superconducting phase. The gaps in the PBCS and

PQG approximations show some structure for G/Gc ∼ 1.7 and 2.3 for which we could not

find an explanation. However, this structure disappears with the PQGT conditions.
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To ensure that the v2RDM method is extensible to systems of arbitrary sizes we show

in Fig. 3 the comparison of the total ground-state energy under the PQGT conditions with

the exact energy for systems with sizes ranging from L = 10 to 100 levels. To compute

systems of such larger sizes we have relaxed the summation error to δ = 3 · 10−7, which is

marginally lower that the previous computations. Our results show that the exact ground-

state energies are numerically exact to the required precision independently of the system

sizes. The relative energy errors are of the same order of magnitude taking into account

that the correlation energy (inset of Fig. 1) increases by one order of magnitude along the

horizontal axis.

3.2 The reduced BCS Hamiltonian

The reduced BCS or constant pairing Hamiltonian has been widely employed in condensed

matter and nuclear physics to study superconducting properties of extensive as well as fi-

nite size systems in the BCS approximation. Few years after the celebrated BCS paper,

Richardson solved this Hamiltonian exactly.74 More recently, the exact solution has been

generalized to families of exactly solvable pairing models.44 In this subsection we will resort

to the constant pairing Hamiltonian in the form used to describe ultrasmall superconducting

grains75

HBCS =
L∑
i=1

εi
2
Ni −G

L∑
ij=1

c†ic
†
i
cjcj (54)

Richardson proposed a product pair ansatz for the exact eigenstates of the BCS Hamiltonian

|Ψ〉 =
M∏
α=1

(
L∑
i=1

c†ic
†
i

εi − Eα

)
|0〉 (55)

As in the RGK case, the pair energies, Eα, are obtained from the solution of a set of M

nonlinear coupled equations and the total eigenvalues are the sum of the pair energies E =∑M
α=1 Eα.

Note the slight difference with the eigenstates of the RGK Hamiltonian. In spite of the
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Figure 4: Absolute energy difference of the v2RDM and the PBCS with respect to the exact
ground-state energy of the constant pairing Hamiltonian at different interaction strengths
for a system with L = 50 doubly degenerate levels. The v2RDM results are computed with
the PQG and the PQGT conditions. Inset: exact correlation energy.

similarities in the wavefunction, the physics of these two Hamiltonians is completely differ-

ent. While the BCS Hamiltonian describes fermions interacting through an attractive s-wave

pairing, the RGK Hamiltonian describes a p-wave interaction. In the former case there is

a smooth crossover from a superconducting BCS state to a Bose-Einstein condensate.76 In

the latter case there is a third-order quantum phase transition from a topological super-

conducting phase to a trivial superconducting phase or Bose-Einstein condensate of p-wave

molecules.69

In small grains it is customary to assume equidistant levels and to express all quantities

in units of the mean level spacing d, which in turn is inversely proportional to the volume

of the grain. However, due to presence of disorder, the level spacing in small metallic grains

follows a Wigner-Dyson distribution obtained from random matrix theory. We will take

advantage of the two standard descriptions of small grains to benchmark the v2RDM. First,

we will test it with uniformly distributed equidistant levels, and then investigate how robust

is the method in the presence of random disorder.

In order to quantify pairing fluctuations around the Fermi level we make use of the
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Figure 5: Absolute canonical gap difference of the v2RDM and the PBCS with respect to the
exact canonical gap of the constant pairing Hamiltonian at different interaction strengths.
The v2RDM results are computed with the PQG and the PQGT conditions. Computations
are for a system with 50 doubly degenerate levels.

canonical gap ∆c

∆c = G
L∑
i=1

√〈
c†ic
†
i
cici

〉
−
〈
c†ici
〉〈

c†
i
ci

〉
= G

L∑
i=1

√
Pii (1− Pii) (56)

For finite systems the BCS approximation has a metallic phase with no gap, and a super-

conducting phase with finite gap. The critical value of G is

Gc =

[∑
i

1

|εi − µ|

]−1

(57)

Since Gc is a sensible value to assess the degree of superconducting correlations, we will

study the BCS Hamiltonian for different system sizes as a function of G in units of Gc.

Fig. 4 shows the absolute value of the differences between the ground-state energy in the

different approximations and the exact one for a system of M = 25 fermion pairs in L = 50
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Figure 6: Absolute energy difference of the v2RDM with the PQGT conditions with respect
to the exact ground-state energy of the constant pairing Hamiltonian with different number
of doubly degenerate levels as specified in the legend.

equidistant single-particle levels with spacing d = 1/L as a function of the pairing strength G

in units of Gc. As in the case of the RGK model, the PQGT conditions are sufficient enough

to reproduce the exact results within the numerical error of the computing program. Ref.29

found the same conclusion for a system of M = 12 pairs. PQG and PBCS are significantly

less precise with a complementary behavior. PQG starts with a good description of the

system at weak pairing, but it quickly degrades approaching the critical region. On the

contrary, PBCS is less accurate in weak pairing but tends to improve towards the strong

superconducting region. The inset displays the exact correlation energy as a function of

G, exhibiting a change in curvature around the critical BCS value of G that separates a

regime dominated by pairing fluctuations from a superconducting phase characterized by a

condensation of Cooper pairs. A similar picture is described in the inset of Fig. 5 with small

but nonzero values of the canonical gap below Gc changing to a linear behavior above Gc.

Fig. 5 confirms the remarkable accuracy of the PQGT approximation. Curiously, the

gaps in the PBCS and PQG approximations show a similar behavior for G/Gc ∼ 1.7 and

3.0 respectively as in the RGK model.
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Fig. 6 explores the accuracy of the PQGT method as a function of the system size

in a similar way as it has been done for the RGK Hamiltonian. As seen in the figure, the

v2RDM energies are numerically exact within the accepted tolerance. The relative errors are

comparable since the correlation energy is of the same order of magnitude for the whole range

of interactions (inset of Fig. 4). As in the RGK example, we have relaxed the summation

error to δ = 3 · 10−7.

It is known that the energy levels of small metallic grains follow a Gaussian orthogonal

ensemble distribution. For simplicity, most of the studies have been carried out assum-

ing a uniform level spacing. However, the exact solution of the BCS Hamiltonian (54)

is valid for arbitrary single-particle levels εi. This feature has been exploited to study in

an exact manner the interplay between randomness and interaction in the crossover from

metal to superconductor as a function of the grain size.49 Here, we will use this ability of

the exact solution to test the robustness of the PQGT conditions against disorder in the

single-particle levels spectrum. For each value of G/Gc in Fig. 7 we generate 70 symmetric

random matrices of size 2L× 2L. Upon diagonalization, we select the central L eigenvalues

to avoid edge effects. In order to assure an average constant level spacing we rescale them

as ε→ (1/2π)[4L sin−1
(
ε/
√

4L
)

+ ε
√

4L− ε2].

Fig. 7 shows the results obtained in the PQGT approximation for each random ensemble

as compared with the uniform level spacing case. Interestingly enough, the transition from

metallic to superconductor reveals a clear cut distinction in the accuracy of the v2RDM

method. While the method is completely accurate for all instances below the critical Gc

value, it starts to deviate from the exact ground-state energy crossing this point and loosing

three orders of magnitude in accuracy. In spite of this loss, errors of 10−4 in the correlation

energy are quite acceptable for many standards. However, the reason of this deviation cannot

be attributed the loss of integrability since the random Hamiltonian (54) is always exactly

solvable and the exact eigenstates are given by the ansatz (55). It might be attributed to

the complexity of the wavefunction (55) with random energy levels εi.

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

G/Gc

10−7

10−6

10−5

10−4

10−3

|E
−
E
ex
a
ct
|

Equidistant

Random

Mean random

Figure 7: Absolute energy differences of the v2RDM with the PQGT conditions of 70 samples
of random single-particle energies with respect to the exact ground-state for selected values
of G/Gc. The big solid circle signals the mean value of the ensemble. For comparison we
display the PQGT energies of the equidistant single-particle case. Computations are for a
system with 50 doubly degenerate levels.

4 Summary

In this work we have explored the performance of the v2RDM within the seniority zero

subspace for two classes of integrable RG models with different characteristics. The RGK

model has a particular value of the pairing strength GMR = 1
L−M+1

, obtained by Moore and

Read,71 at which the exact ground-state wavefunction is a pair condensate (PBCS or AGP).

From the exact solution, at this point the M pair energies Eα converge to zero transforming

the product of geminals (44) into the AGP (45). From the other side, starting with the AGP

and making use of the killers we derived the Moore-Read Hamiltonian (49) that is contained

in the G condition, and therefore the v2RDM with the PQG conditions should provide the

exact solution. Fig. 1 gives the numerical proof of this statement in a highly non-trivial

problem. This figure also shows that the variational method with the PQGT conditions

gives the exact numerical ground-state energy from weak to strong pairing. Additional

confirmation of the exactness of the PQGT conditions comes from the canonical gaps in

Fig. 2, which also shows an exact value for PQG at the Moore-Read point. Similar results
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for the ground-state energies and gaps were obtained for the reduced BCS Hamiltonian

with equidistant single-particle levels. We then tested the robustness of the PQGT N -

representability conditions against disorder in the single-particle levels as in the case of small

metallic grains (see Fig. 7). Surprisingly, and even though the systems are always quantum

integrable, the exactness of the numerical results was lost in the superconducting region

(G > Gc). This fact might be explained by the complexity of the ground-state wavefunctions

in most of the random instances, as can be deduced from the distribution of pair energies Eα

in the complex plane when the system enters the superconducting phase. However, relative

errors of 10−4 are still competitive with DMRG calculations77 for equidistant levels, and

with more recent approaches tested in the Richardson model for small size systems.78,79

The exact solvability of these models allowed us to test the v2RDM method for large

systems in order to asses its extensive properties. Fig. 3 and 6 demonstrate that the high

accuracy of the PQGT is independent of the system size in the studied range from L = 10

to L = 100.

Before closing, we would like to point out that SU(2) Hamiltonians encompass the area

of quantum magnetism with Heisenberg type Hamiltonians. The formalism developed in42

and tested in this work could be directly applied to the study of spin systems. Due to

the non-perturbative nature of v2RDM, it might be possible to describe with high accuracy

exotic phases and quantum phase transitions.
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