34,219 research outputs found

    The LHC di-photon Higgs signal predicted by little Higgs models

    Full text link
    Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the di-photon signal pphγγpp\to h\to \gamma\gamma. In this work we perform a comparative study for this signal in some typical little Higgs models, namely the littlest Higgs model (LH), two littlest Higgs models with T-parity (named LHT-I and LHT-II) and the simplest little Higgs modes (SLH). We find that compared with the Standard Model prediction, the di-photon signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (\lsim 10%) in the LH model but can be quite severe (90\simeq 90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the di-photon channel at the LHC will be more difficult than discovering the SM Higgs boson.Comment: 17 pages, 4 figures, 1 tabl

    Induced fission of 240Pu

    Full text link
    We study the fission dynamics of 240Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.Comment: 8 pages, 4 figures, talk given at The 6th International Conference on Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 6-2 (2016

    Analysis of hadronic invariant mass spectrum in inclusive charmless semileptonic B decays

    Get PDF
    We make an analysis of the hadronic invariant mass spectrum in inclusive charmless semileptonic B meson decays in a QCD-based approach. The decay width is studied as a function of the invariant mass cut. We examine their sensitivities to the parameters of the theory. The theoretical uncertainties in the determination of Vub|V_{ub}| from the hadronic invariant mass spectrum are investigated. A strategy for improving the theoretical accuracy in the value of Vub|V_{ub}| is described.Comment: 13 pages, 5 Postscript figure

    Real time description of fission

    Full text link
    Using the time-dependent superfluid local density approximation, the dynamics of fission is investigated in real time from just beyond the saddle to fully separated fragments. Simulations produced in this fully microscopic framework can help to assess the validity of the current approaches to fission, and to obtain estimate of fission observables. In this contribution, we concentrate on general aspects of fission dynamics.Comment: Proceedings of the "15th Varenna Conference on Nuclear Reaction Mechanisms," Varenna, Italy, June 201

    On the entanglement entropy for a XY spin chain

    Full text link
    The entanglement entropy for the ground state of a XY spin chain is related to the corner transfer matrices of the triangular Ising model and expressed in closed form.Comment: 4 pages, 2 figure

    On the reduced density matrix for a chain of free electrons

    Full text link
    The properties of the reduced density matrix describing an interval of N sites in an infinite chain of free electrons are investigated. A commuting operator is found for arbitrary filling and also for open chains. For a half filled periodic chain it is used to determine the eigenfunctions for the dominant eigenvalues analytically in the continuum limit. Relations to the critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio

    GPS scintillations associated with cusp dynamics and polar cap patches

    Get PDF
    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval

    Quantum Correlations from the Conditional Statistics of Incomplete Data

    Get PDF
    We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of the photodetectors
    corecore