985 research outputs found
Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.
The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+) current affects intracellular Ca(2+) dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na(+)/Ca(2+) exchanger, sarcolemmal Ca(2+) pump, and sarcolemmal Ca(2+) leak), and stationary and mobile Ca(2+) buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca(2+). We obtained parameters from voltage-clamp protocols of L-type Ca(2+) current and line-scan recordings of Ca(2+) concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca(2+) transient in myocytes loaded with 50 μM Fluo-3. We found that local Ca(2+) concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca(2+) crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca(2+) flux distribution. The model additionally predicts that local Ca(2+) trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca(2+) trigger flux. We found also that the activation of allosteric Ca(2+)-binding sites on the Na(+)/Ca(2+) exchanger could provide a mechanism for regulating global and local Ca(2+) trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na(+)/Ca(2+) exchanger fluxes to intracellular Ca(2+) dynamics
Recommended from our members
Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HOx and other photochemical parameters
Data for the tropical upper troposphere (8-12 km, 20° N-20° S) collected during NASA's Pacific Exploratory Missions have been used to carry out a detailed examination of the photochemical processes controlling HOx (OH+HO2). Of particular significance is the availability of measurements of nonmethane hydrocarbons, oxygenated hydrocarbons (i.e., acetone, methanol, and ethanol) and peroxides (i.e., H2O2 and CH3OOH). These observations have provided constraints on model calculations permitting an assessment of the potential impact of these species on the levels of HOx, CH3O2, CH2O, as well as ozone budget parameters. Sensitivity calculations using a time-dependent photochemical box model show that when constrained by measured values of the above oxygenated species, model estimated HOx levels are elevated relative to unconstrained calculations. The impact of constraining these species was found to increase with altitude, reflecting the systematic roll-off in water vapor mixing ratios with altitude. At 11-12 km, overall increases in HOx approached a factor of 2 with somewhat larger increases being found for gross and net photochemical production of ozone. While significant, the impact on HOx due to peroxides appears to be less than previously estimated. In particular, observations of elevated H2O2 levels may be more influenced by local photochemistry than by convective transport. Issues related to the uncertainty in high-altitude water vapor levels and the possibility of other contributing sources of HOx are discussed. Finally, it is noted that the uncertainties in gas kinetic rate coefficients at the low temperatures of the upper troposphere and as well as OH sensor calibrations should be areas of continued investigation. Copyright 1999 by the American Geophysical Union
Recommended from our members
Evolution and chemical consequences of lightning-produced NOx observed in the North Atlantic upper troposphere
Airborne observations of NO during the Subsonics Assessment Ozone and Nitrogen Oxides Experiment (SONEX) reveal episodes of high NOx in the upper troposphere believed to be associated with lightning. Linkage to specific periods of lightning activity is possible through back trajectories and data from the National Lightning Detection Network. Lagrangian model calculations are used to explore the evolution of these high NOx plumes over the 1-2 days between their introduction and subsequent sampling by NASA's DC-8 aircraft. Simulations include expected changes in HNO3, H2O2, CH3OOH, HO2, and OH. Depending on the time of injection and dilution rate, initial NOx concentrations are estimated to range from 1 to 7 ppbv. Similar to many previous studies, simulated HNO3 concentrations tend to be greater than observations. Several possible explanations for this difference are explored. H2O2 observations are shown to be consistent with removal in convective activity. While it is possible that upper tropospheric CH3OOH is enhanced by convection, simulations show such increases in CH3OOH can be short-lived (e.g., < 12 hours) with no perceptible trace remaining at the time of sampling. High NO levels further prevent elevated levels of CH3OOH from propagating into increases in H2O2. HO2 is suppressed through reaction with NO in all cases. Simulated increases in OH exceeded a factor of 2 for some cases, but for the highest NOx levels, loss of OH via OH+NO2 offset production from HO2+NO. Additional increases in OH of 30-60% could result from convection of CH3OOH. A final point of discussion concerns how the chemistry within these plumes, their long-range transport, and their potential importance in sustaining background NOx far from source regions present a challenge to global and regional model simulations. Copyright 2000 by the American Geophysical Union
The production and persistence of ΣRONO2 in the Mexico City plume
Alkyl and multifunctional nitrates (RONO2, ΣANs) have been observed to be a significant fraction of NOy in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. ΣANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role ΣANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO2, total peroxy nitrates (ΣPNs), HNO3 and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. ΣANs were observed to be 10–20% of NOy in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of ΣANs with odd-oxygen (Ox) indicate a stronger role for ΣANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms, (2) ΣAN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) ΣANs play a significant role in the export of NOy from Mexico City to the Gulf Region
Cardiac cell modelling: Observations from the heart of the cardiac physiome project
In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field
Summertime partitioning and budget of NOycompounds in the troposphere over Alaska and Canada: ABLE 3B
As part of NASA's Arctic Boundary Layer Expedition 3A and 3B field measurement programs, measurements of NO(x) HNO31, PAN, PPN, and NOy were made in the middle to lower troposphere over Alaska and Canada during the summers of 1988 and 1990. These measurements are used to assess the degree of closure within the reactive odd nitrogen (NxOy) budget through the comparison of the values of NOy measured with a catalytic convertor to the sum of individually measured NOy(i) compounds (i.e., Sigma NOy(i) = NOx + HNO3 + PAN + PPN). Significant differences were observed between the various study regions. In the lower 6 km of the troposphere over Alaska and the Hudson Bay lowlands of Canada a significant traction of the NOy budget (30 to 60 per cent) could not be accounted for by the measured Sigma NOy(i). This deficit in the NOy budget is about 100 to 200 parts per trillion by volume (pptv) in the lower troposphere (0.15 to 3 km) and about 200 to 400 pptv in the middle free troposphere (3 to 6.2 km). Conversely, the NOy budget in the northern Labrador and Quebec regions or Canada is almost totally accounted for within the combined measurement uncertainties of NOy and the various NOy(i) compounds. A substantial portion of the NOx budget's 'missing compounds' appears to be coupled to the photochemical and/or dynamical parameters influencing the tropospheric oxidative potential over these regions. A combination of factors are suggested as the causes for the variability observed in the NOy budget. In addition, the apparent stability of compounds represented by the NOy budget deficit in the lower-attitude range questions the ability of these compounds to participate as reversible reservoirs for "active" odd nitrogen and suggest that some portion of the NOy budget may consist of relatively unreactive nitrogencontaining compounds. Bei der Rationalisierung von Kommissioniersystemen besteht bei vielen Unternehmen noch Nachholbedarf. Dies ergab eine Umfrage des Fraunhofer-Instituts für Materialfluss und Logistik in Dortmund bei ca. 800 Unternehmen. Keins der Unternehmen setzt Kommissionierautomaten ein, die Voraussetzungen für durchgehende Automatisierung fehlen
An assessment of ozone photochemistry in the extratropical western North Pacific: Impact of continental outflow during the late winter/early spring
This study examines the influence of photochemical processes on tropospheric ozone distributions over the extratropical western North Pacific. The analysis presented ere is based on data collected during the Pacific Exploratory Mission-West Phase B (PEM-West B) field study conducted in February-March 1994. Sampling in the study region involved altitudes of 0-12 km and latitudes of 10°S to 50°N. The extratropical component of the data set (i.e., 20-50°N) was defined by markedly different photochemical environments north and south of 30°N. This separation was clearly defined by an abrupt decrease in the tropopause height near 30°N and a concomitant increase in total O3 column density. This shift in overhead O3 led to highly reduced rates of O3 formation and destruction for the 30-50°N latitude regime. Both latitude ranges, however, stili exhibited net O3 production at all altitudes. Of special significance was the finding that net O3 production prevailed even at boundary layer and lower free tropospheric altitudes (e.g., < 4 km), a condition uncommon to Pacific marine environments. These results reflect the strong impact of continental outflow of O3 precursors (e.g., NO and NMHCs) into the northwestern Pacific Basin. Comparisons with PEM-West A, which sampled the same region in a different season (September-October), revealed major differences at altitudes below 4 km, the altitude range most influenced by continental outflow. The resulting net rate of increase in the tropospheric O3 column for PEM-West B was 1-3% per day, while for PEM-West A it was approximately zero. Unique to the PEM-West B study is the finding that even under wintertime conditions substantial column production of tropospheric O3 can occur at subtropical and mid-latitudes. While such impacts may not be totally unexpected at near coast locations, the present study suggests that the impact from continental outflow on the marine BL could extend out to distances of more than 2000 km from the Asian Pacific Rim
Recommended from our members
Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime
This paper describes the large-scale distributions of HNO3, HCOOH, and CH3COOH over the central and South Pacific basins during the Pacific Exploratory Mission-Tropics (PEM-Tropics) in austral springtime. Because of the remoteness of this region from continental areas, low part per trillion by volume (pptv) mixing ratios of acidic gases were anticipated to be pervasive over the South Pacific basin. However, at altitudes of 2–12 km over the South Pacific, air parcels were encountered frequently with significantly enhanced mixing ratios (up to 1200 pptv) of acidic gases. Most of these air parcels were centered in the 3–7 km altitude range and occurred within the 15°−65°S latitudinal band. The acidic gases exhibited an overall general correlation with CH3Cl, PAN, and O3, suggestive of photochemical and biomass burning sources. There was no correlation or trend of acidic gases with common industrial tracer compounds (e.g., C2Cl4 or CH3CCl3). The combustion emissions sampled over the South Pacific basin were relatively aged exhibiting C2H2/CO ratios in the range of 0.2–2.2 pptv/ppbv. The relationships between acidic gases and this ratio were similar to what was observed in aged air parcels (i.e., \u3e3–5 days since they were over a continental area) over the western North Pacific during the Pacific Exploratory Mission-West Phases A and B (PEM-West A and B). In the South Pacific marine boundary layer a median C2H2/CO ratio of 0.6 suggested that this region was generally not influenced by direct inputs of biomass combustion emissions. Here we observed the lowest mixing ratios of acidic gases, with median values of 14 pptv for HNO3, 19 pptv for HCOOH, and 18 pptv for CH3COOH. These values were coincident with low mixing ratios of NOx(\u3c10 pptv), CO (≈50 parts per billion by volume (ppbv)), O3 (\u3c 20 ppbv), and long-lived hydrocarbons (e.g., C2H6 \u3c300 pptv). Overall, the PEM-Tropics data suggest an important influence of aged biomass combustion emissions on the distributions of acidic gases over the South Pacific basin in austral springtime
Apropriate Ultrasonic System Components for NDE of Thick Polymer-Composites
In certain marine applications, thick polymer-composite materials may have to endure different operating environments than those experienced in traditional aerospace applications. In particular, structures made of such materials may experience very large compressive and bending forces. To prevent in-service failure, appropriate NDE methods and instrumentation are needed to characterize the state of the material. Specifically, in addition to detecting high-contrast anomalies (cracks and delaminations) it may be of interest to determine the pore content, measure the fiber volume, assess the severity of fiber waviness, and the like [1]
- …