40,609 research outputs found
Shear-induced criticality near a liquid-solid transition of colloidal suspensions
We investigate colloidal suspensions under shear flow through numerical
experiments. By measuring the time-correlation function of a bond-orientational
order parameter, we find a divergent time scale near a transition point from a
disordered fluid phase to an ordered fluid phase, where the order is
characterized by a nonzero value of the bond-orientational order parameter. We
also present a phase diagram in the plane,
where is the density of the colloidal particles and
is the shear rate of the solvent. The transition
line in the phase diagram terminates at the equilibrium transition point, while
a critical region near the transition line vanishes continuously as
.Comment: 4 pages, 8 figure
Sine-Gordon Soliton on a Cnoidal Wave Background
The method of Darboux transformation, which is applied on cnoidal wave
solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave
background. Interesting characteristics of the solution, i.e., the velocity of
solitons and the shift of crests of cnoidal waves along a soliton, are
calculated. Solutions are classified into three types (Type-1A, Type-1B,
Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change
PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS
Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled
Shortcuts to adiabaticity for an ion in a rotating radially-tight trap
We engineer the fast rotation of a quantum particle confined in an
effectively one-dimensional, harmonic trap, for a predetermined rotation angle
and time, avoiding final excitation. Different schemes are proposed with
different speed limits that depend on the control capabilities. We also make
use of trap rotations to create squeezed states without manipulating the trap
frequencies.Comment: 11 pages, 6 figure
Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia
© Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio
The order-disorder transition in colloidal suspensions under shear flow
We study the order-disorder transition in colloidal suspensions under shear
flow by performing Brownian dynamics simulations. We characterize the
transition in terms of a statistical property of time-dependent maximum value
of the structure factor. We find that its power spectrum exhibits the power-law
behaviour only in the ordered phase. The power-law exponent is approximately -2
at frequencies greater than the magnitude of the shear rate, while the power
spectrum exhibits the -type fluctuations in the lower frequency regime.Comment: 11 pages, 10 figures, v.2: We have made some small improvements on
presentation
Collimated Jet or Expanding Outflow: Possible Origins of GRBs and X-Ray Flashes
We investigate the dynamics of an injected outflow propagating in a
progenitor in the context of the collapsar model for gamma-ray bursts (GRBs)
through two dimensional axisymmetric relativistic hydrodynamic simulations.
Initially, we locally inject an outflow near the center of a progenitor. We
calculate 25 models, in total, by fixing its total input energy to be 10^{51}
ergs s^{-1} and radius of the injected outflow to be cm while
varying its bulk Lorentz factor, , and its specific
internal energy, . The injected outflow propagates
in the progenitor and drives a large-scale outflow or jet. We find a smooth but
dramatic transition from a collimated jet to an expanding outflow among
calculated models. The maximum Lorentz factor is, on the other hand, sensitive
to both of and ; roughly . Our finding will explain a smooth transition between the
GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but
with different values.Comment: Comments 51 pages, 21 figures. accepted for publication in ApJ high
resolution version is available at
http://www.mpa-garching.mpg.de/~mizuta/COLLAPSAR/collapsar.htm
Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction
We study a non-ergodic transition in a many-body Langevin system. We first
derive an equation for the two-point time correlation function of density
fluctuations, ignoring the contributions of the third- and fourth-order
cumulants. For this equation, with the average density fixed, we find that
there is a critical temperature at which the qualitative nature of the
trajectories around the trivial solution changes. Using a method of dynamical
system reduction around the critical temperature, we simplify the equation for
the time correlation function into a two-dimensional ordinary differential
equation. Analyzing this differential equation, we demonstrate that a
non-ergodic transition occurs at some temperature slightly higher than the
critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe
- …
