6,752 research outputs found

    Geometrical modelling of pulsed laser ablation of high performance metallic alloys

    Get PDF
    Modelling of Pulsed Laser Ablation (PLA) for the prediction of complex geometries has generally achieved limited success when aimed at large structures resulting from a high number of overlapped pulses, in particular for the ablation of metallic materials, where a significant volume of molten and re-deposited material can be present. In order to extend the capabilities of process simulation for surface prediction of PLA, this paper presents a novel problem formulation that takes into consideration the behaviour of the ejected/redeposited melt as well as the non-linear interaction between successive pulses when a laser beam is scanned along a given path. This results in a simplified mathematical framework capable of predicting features with good accuracy and low computational cost. The evolution of the depth/height at any point on the surface can be described by the convolution of a radially-varying function that represents the steady state ablation footprint (which includes also material redeposition) created by a pulsed laser scanned across the workpiece scaled according to pulse separation distance (i.e. feed speed). The model also reveals some interesting dynamics of the behaviour of redeposited material, which appears to have a lower removal threshold compared to the virgin material. This can be taken into account in a modified model formulation by introducing a linear scaling coefficient for the ablation function. Validation of the model on Ni- and Ti- superalloy for both the prediction of single trenches (i.e. scanning along straight path) at constant and variable feed speed, and overlapped trenches, is performed with an average error of less than 10%. The framework presented in the paper could provide a valuable step forward in process modelling of PLA for real-world industrial applications

    Essential pediatric hypertension: defining the educational needs of primary care pediatricians

    Get PDF
    BACKGROUND: In order to better understand the educational needs regarding appropriate recognition, diagnosis and management of pediatric hypertension (HTN), we asked practicing pediatricians questions regarding their educational needs and comfort level on this topic. METHODS: We conducted 4 focus group sessions that included 27 participants representing pediatric residents, adolescent medicine physicians, clinic based pediatricians and office based pediatricians. Each focus group session lasted for approximately an hour and 90 pages of total transcriptions were produced verbatim from audio recordings. RESULTS: Four reviewers read each transcript and themes were elucidated from these transcripts. Overall, 5 major themes related to educational needs and clinical concerns were found: utilization of resources to define blood pressure (BP), correct BP measurement method(s), co-morbidities, barriers to care, and experience level with HTN. Six minor themes were also identified: differences in BP measurement, accuracy of BP, recognition of HTN, practice pattern of care, education of families and patients, and differences in level of training. The focus group participants were also questioned on their preferences regarding educational methods (i.e. e-learning, small group sessions, self-study, large group presentations) and revealed varied teaching and learning preferences. CONCLUSIONS: There are multiple methods to approach education regarding pediatric HTN for primary care pediatricians based on provider preferences and multiple educational activities should be pursued to achieve best outcomes. Based on this data, the next direction will be to develop and deliver multiple educational methods and to evaluate the impact on practice patterns of care for children and adolescents with HTN

    Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy

    Full text link
    Relativistic electrons in a structured medium generate radiative losses such as Cherenkov and transition radiation that act as a virtual light source, coupling to the photonic densities of states. The effect is most pronounced when the imaginary part of the dielectric function is zero, a regime where in a non-retarded treatment no loss or coupling can occur. Maps of the resultant energy losses as a sub-5nm electron probe scans across finite waveguide structures reveal spatial distributions of optical modes in a spectral domain ranging from near-infrared to far ultraviolet.Comment: 18 pages, 4 figure

    SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

    Full text link
    In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles

    Fine structure of alpha decay in odd nuclei

    Get PDF
    Using an alpha decay level scheme, an explanation for the fine structure in odd nuclei is evidenced by taking into account the radial and rotational couplings between the unpaired nucleon and the core of the decaying system. It is stated that the experimental behavior of the alpha decay fine structure phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review

    A Phase Glass is a Bose Metal: New Conducting State in 2D

    Full text link
    In the quantum rotor model with random exchange interactions having a non-zero mean, three phases, a 1) phase (Bose) glass, 2) superfluid, and 3) Mott insulator, meet at a bi-critical point. We demonstrate that proximity to the bi-critical point and the coupling between the energy landscape and the dissipative degrees of freedom of the phase glass lead to a metallic state at T=0. Consequently, the phase glass is unique in that it represents a concrete example of a metallic state that is mediated by disorder, even in 2D. We propose that the experimentally observed metallic phase which intervenes between the insulator and the superconductor in a wide range of thin films is in actuality a phase glass.Comment: 4 pages, 1 .eps figure, final version to appear in Phys. Rev. Let

    Characteristic molecular properties of one-electron double quantum rings under magnetic fields

    Full text link
    The molecular states of conduction electrons in laterally coupled quantum rings are investigated theoretically. The states are shown to have a distinct magnetic field dependence, which gives rise to periodic fluctuations of the tunnel splitting and ring angular momentum in the vicinity of the ground state crossings. The origin of these effects can be traced back to the Aharonov-Bohm oscillations of the energy levels, along with the quantum mechanical tunneling between the rings. We propose a setup using double quantum rings which shows that Aharonov-Bohm effects can be observed even if the net magnetic flux trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT→0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Information flow on COVID-19 over Wikipedia: A case study of 11 languages

    Get PDF

    Face analysis using curve edge maps

    Get PDF
    This paper proposes an automatic and real-time system for face analysis, usable in visual communication applications. In this approach, faces are represented with Curve Edge Maps, which are collections of polynomial segments with a convex region. The segments are extracted from edge pixels using an adaptive incremental linear-time fitting algorithm, which is based on constructive polynomial fitting. The face analysis system considers face tracking, face recognition and facial feature detection, using Curve Edge Maps driven by histograms of intensities and histograms of relative positions. When applied to different face databases and video sequences, the average face recognition rate is 95.51%, the average facial feature detection rate is 91.92% and the accuracy in location of the facial features is 2.18% in terms of the size of the face, which is comparable with or better than the results in literature. However, our method has the advantages of simplicity, real-time performance and extensibility to the different aspects of face analysis, such as recognition of facial expressions and talking
    • …
    corecore