5,661 research outputs found

    Electrowetting of liquid marbles

    Get PDF
    Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 degrees. In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible

    Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs

    Full text link
    We generalize the belief-propagation algorithm to sparse random networks with arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in these networks belongs to a given set of motifs (generalization of the configuration model). These networks can be treated as sparse uncorrelated hypergraphs in which hyperedges represent motifs. Here a hypergraph is a generalization of a graph, where a hyperedge can connect any number of vertices. These uncorrelated hypergraphs are tree-like (hypertrees), which crucially simplify the problem and allow us to apply the belief-propagation algorithm to these loopy networks with arbitrary motifs. As natural examples, we consider motifs in the form of finite loops and cliques. We apply the belief-propagation algorithm to the ferromagnetic Ising model on the resulting random networks. We obtain an exact solution of this model on networks with finite loops or cliques as motifs. We find an exact critical temperature of the ferromagnetic phase transition and demonstrate that with increasing the clustering coefficient and the loop size, the critical temperature increases compared to ordinary tree-like complex networks. Our solution also gives the birth point of the giant connected component in these loopy networks.Comment: 9 pages, 4 figure

    Stable two-dimensional dispersion-managed soliton

    Full text link
    The existence of a dispersion-managed soliton in two-dimensional nonlinear Schr\"odinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct PDE and ODE simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.

    Roughening Transition in a One-Dimensional Growth Process

    Full text link
    A class of nonequilibrium models with short-range interactions and sequential updates is presented. The models describe one dimensional growth processes which display a roughening transition between a smooth and a rough phase. This transition is accompanied by spontaneous symmetry breaking, which is described by an order parameter whose dynamics is non-conserving. Some aspects of models in this class are related to directed percolation in 1+1 dimensions, although unlike directed percolation the models have no absorbing states. Scaling relations are derived and compared with Monte Carlo simulations.Comment: 4 pages, 3 Postscript figures, 1 Postscript formula, uses RevTe

    An Experimental Investigation Into the Performance of a Flush Water-Jet Inlet

    Get PDF
    An experimental investigation of the flow within a generic flush type water-jet inlet has been carried out to identify the principal flow features and provide a basis for development of computational fluid dynamics (CFD) models. Tests were performed in a cavitation tunnel with the model inlet fitted to the test section ceiling, and effects of thickening the ingested tunnel wall boundary layer were investigated. The model was fitted with a range of instrumentation to investigate the ramp pressure distribution and boundary layer development, lip incidence, and pump face flow properties. Observations of lip and duct cavitation inception and behavior were also made. The results showed the inlet performance to be generally improved with the ingestion of a thicker boundary layer. The thickened boundary layer significantly reduced ramp boundary layer separation and distortion of flow at the notional pump face. However, a greater range of lip incidence occurred with the thickened boundary layer with consequent greater likelihood of lip separation and cavitation occurrence. Ideal lip incidence and pump face flow uniformity occurred at flow parameters significantly different from those for ideal pump face pressure recovery. Large developed cavities on the inlet lip were observed for a range of conditions typical of conventional high-speed vessel operation

    Renormalization of Crumpled Manifolds

    Get PDF
    We consider a model of D-dimensional tethered manifold interacting by excluded volume in R^d with a single point. By use of intrinsic distance geometry, we first provide a rigorous definition of the analytic continuation of its perturbative expansion for arbitrary D, 0 < D < 2. We then construct explicitly a renormalization operation, ensuring renormalizability to all orders. This is the first example of mathematical construction and renormalization for an interacting extended object with continuous internal dimension, encompassing field theory.Comment: 10 pages (1 figure, included), harvmac, SPhT/92-15

    Phase diagram of the restricted solid-on-solid model coupled to the Ising model

    Full text link
    We study the phase transitions of a restricted solid-on-solid model coupled to an Ising model, which can be derived from the coupled XY-Ising model. There are two kinds of phase transition lines. One is a Ising transition line and the other is surface roughening transition line. The latter is a KT transition line from the viewpoint of the XY model. Using a microcanonical Monte Carlo technique, we obtain a very accurate two dimensional phase diagram. The two transition lines are separate in all the parameter space we study. This result is strong evidence that the fully frustrated XY model orders by two separate transitions and that roughening and reconstruction transitions of crystal surfaces occur separately.Comment: 17 pages, source RevTeX file and 8 PS figures are tarred and compressed via uufile

    Sputum microbiome profiling in COPD: beyond singular pathogen detection.

    Full text link
    Culture-independent microbial sequencing techniques have revealed that the respiratory tract harbours a complex microbiome not detectable by conventional culturing methods. The contribution of the microbiome to chronic obstructive pulmonary disease (COPD) pathobiology and the potential for microbiome-based clinical biomarkers in COPD are still in the early phases of investigation. Sputum is an easily obtainable sample and has provided a wealth of information on COPD pathobiology, and thus has been a preferred sample type for microbiome studies. Although the sputum microbiome likely reflects the respiratory microbiome only in part, there is increasing evidence that microbial community structure and diversity are associated with disease severity and clinical outcomes, both in stable COPD and during the exacerbations. Current evidence has been limited to mainly cross-sectional studies using 16S rRNA gene sequencing, attempting to answer the question 'who is there?' Longitudinal studies using standardised protocols are needed to answer outstanding questions including differences between sputum sampling techniques. Further, with advancing technologies, microbiome studies are shifting beyond the examination of the 16S rRNA gene, to include whole metagenome and metatranscriptome sequencing, as well as metabolome characterisation. Despite being technically more challenging, whole-genome profiling and metabolomics can address the questions 'what can they do?' and 'what are they doing?' This review provides an overview of the basic principles of high-throughput microbiome sequencing techniques, current literature on sputum microbiome profiling in COPD, and a discussion of the associated limitations and future perspectives
    • …
    corecore