88 research outputs found

    Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice

    Get PDF
    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrodinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt & Wattis, J Phys A, 39, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.Comment: 29 pages, 14 Figure

    Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Doring equations with power law rate coefficients

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. We investigate the Becker-Dorging equations, originally formulated to describe and analyse non-equilibrium phase transitions, and more recently generalised to describe a wide range of physicochemical problems. In the present paper we analyse how the systematic coarse-graining renormalisation of the \BD system of equations affects the aggregation and fragmentation rate coefficients. We consider the case of power-law size-dependent cluster rate coefficients which we show lead to only three classes of system that require analysis: coagulation-dominated systems, fragmentation-dominated systems and those where coagulation and fragmentation are exactly balanced. We analyse the late-time asymptotics associated with each class.Comment: 18 pages, to appear in J Phys A Math Ge

    Long-Time Behaviour and Self-Similarity in a Coagulation Equation with Input of Monomers

    Get PDF
    For a coagulation equation with Becker-Doring type interactions and time-independent monomer input we study the detailed long-time behaviour of nonnegative solutions and prove the convergence to a self-similar function.Comment: 30 pages, 5 Figures, now published in Markov Processes and Related Fields 12, 367-398, (2006

    Modelling crystal aggregation and deposition\ud in the catheterised lower urinary tract

    Get PDF
    Urethral catheters often become encrusted with crystals of magnesium struvite and calcium phosphate. The encrustation can block the catheter, which can cause urine retention in the bladder and reflux into the kidneys. We develop a mathematical model to investigate crystal deposition on the catheter surface, modelling the bladder as a reservoir of fluid and the urethral catheter as a rigid channel. At a constant rate, fluid containing crystal particles of unit size enters the reservoir, and flows from the reservoir through the channel and out of the system. The crystal particles aggregate, which we model using Becker–Döring coagulation theory, and are advected through the channel, where they continue to aggregate and are deposited on the channel’s walls. Inhibitor particles also enter the reservoir, and can bind to the crystals, preventing further aggregation and deposition. The crystal concentrations are spatially homogeneous in the reservoir, whereas the channel concentrations vary spatially as a result of advection, diffusion and deposition. We investigate the effect of inhibitor particles on the amount of deposition. For all parameter values, we find that crystals deposit along the full length of the channel, with maximum deposition close to the channel’s entrance

    Renormalisation-theoretic analysis of non-equilibrium phase transitions II: The effect of perturbations on rate coefficients in the Becker-Doring equations

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. In particular, we investigate the Becker-Doring (BD) equations, originally formulated to describe and analyse non-equilibrium phase transitions, but more recently generalised to describe a wide range of physicochemical problems. We consider here rate coefficients which depend on the cluster size in a power-law fashion, but now perturbed by small amplitude random noise. Power-law rate coefficients arise naturally in the theory of surface-controlled nucleation and growth processes. The noisy perturbations on these rates reflect the effect of microscopic variations in such mean-field coefficients, thermal fluctuations and/or experimental uncertainties. In the present paper we generalise our earlier work that identified the nine classes into which all dynamical behaviour must fall by investigating how random perturbations of the rate coefficients influence the steady-state and kinetic behaviour of the coarse-grained, renormalised system. We are hence able to confirm the existence of a set of up to nine universality classes for such BD systems.Comment: 30 pages, to appear in J Phys A Math Ge

    Symmetry-breaking in chiral polymerisation

    Get PDF
    We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomer and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure

    Dissociation in a polymerization model of homochirality

    Full text link
    A fully self-contained model of homochirality is presented that contains the effects of both polymerization and dissociation. The dissociation fragments are assumed to replenish the substrate from which new monomers can grow and undergo new polymerization. The mean length of isotactic polymers is found to grow slowly with the normalized total number of corresponding building blocks. Alternatively, if one assumes that the dissociation fragments themselves can polymerize further, then this corresponds to a strong source of short polymers, and an unrealistically short average length of only 3. By contrast, without dissociation, isotactic polymers becomes infinitely long.Comment: 16 pages, 6 figures, submitted to Orig. Life Evol. Biosp

    Coagulation and fragmentation processes with evolving size and shape profiles : a semigroup approach

    Get PDF
    We investigate a class of bivariate coagulation-fragmentation equations. These equations describe the evolution of a system of particles that are characterised not only by a discrete size variable but also by a shape variable which can be either discrete or continuous. Existence and uniqueness of strong solutions to the associated abstract Cauchy problems are established by using the theory of substochastic semigroups of operators

    Discrete breathers in honeycomb Fermi-Pasta-Ulam lattices

    Get PDF
    We consider the two-dimensional Fermi-Pasta-Ulam lattice with hexagonal honeycomb symmetry, which is a Hamiltonian system describing the evolution of a scalar-valued quantity subject to nearest neighbour interactions. Using multiple-scale analysis we reduce the governing lattice equations to a nonlinear Schrodinger (NLS) equation coupled to a second equation for an accompanying slow mode. Two cases in which the latter equation can be solved and so the system decoupled are considered in more detail: firstly, in the case of a symmetric potential, we derive the form of moving breathers. We find an ellipticity criterion for the wavenumbers of the carrier wave, together with asymptotic estimates for the breather energy. The minimum energy threshold depends on the wavenumber of the breather. We find that this threshold is locally maximised by stationary breathers. Secondly, for an asymmetric potential we find stationary breathers, which, even with a quadratic nonlinearity generate no second harmonic component in the breather. Plots of all our findings show clear hexagonal symmetry as we would expect from our lattice structure. Finally, we compare the properties of stationary breathers in the square, triangular and honeycomb lattices

    Scaling behaviour near jamming in random sequential adsorption

    Get PDF
    For the random Sequential adsorption model, we introduce the ‘availability’ as a new variable corresponding to the number of available locations in which an adsorbate can be accommodated. We investigate the relation of the availability to the coverage of the adsorbent surface over time. Power law scaling between the two is obtained both through numerical simulations and analytical techniques for both one- and two- dimensional random sequential adsorption, as well as in the case of competitive random sequential adsorption in one dimension
    • 

    corecore