8,104 research outputs found
Electron shielding studies - Experimental program Technical summary report, 1 Aug. 1968 - 31 Dec. 1969
Electron shielding and bremsstrahlung energy spectra for tin, gold, and silve
Cut-off rate calculations for the outer channel in a concatenated cooling system
Concatenated codes were long used as a practical means of achieving long block or constraint lengths for combating errors on very noisy channels. The inner and outer encoders are normally separated by an interleaver, so that decoded error bursts coming from the inner decoder are randomized before entering the outer decoder. The effectiveness of this interleaver is examined by calculating the cut-off rate of the outer channel seen by the outer decoder with and without interleaving. Interleaving never hurts the performance of a concatenated code, and when the inner code rate is near the cut-off rate of the inner channel, interleaving significantly improves code performance
Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection
Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.

Functional Morphology and Fluid Interactions During Early Development of the Scyphomedusa Aurelia aurita
Scyphomedusae undergo a predictable ontogenetic transition from a conserved, universal larval form to a diverse array of adult morphologies. This transition entails a change in bell morphology from a highly discontinuous ephyral form, with deep clefts separating eight discrete lappets, to a continuous solid umbrella-like adult form. We used a combination of kinematic, modeling, and flow visualization techniques to examine the function of the medusan bell throughout the developmental changes of the scyphomedusa Aurelia aurita. We found that flow around swimming ephyrae and their lappets was relatively viscous (1 < Re < 10) and, as a result, ephyral lappets were surrounded by thick, overlapping boundary layers that occluded flow through the gaps between lappets. As medusae grew, their fluid environment became increasingly influenced by inertial forces (10 < Re < 10,000) and, simultaneously, clefts between the lappets were replaced by organic tissue. Hence, although the bell undergoes a structural transition from discontinuous (lappets with gaps) to continuous (solid bell) surfaces during development, all developmental stages maintain functionally continuous paddling surfaces. This developmental pattern enables ephyrae to efficiently allocate tissue to bell diameter increase via lappet growth, while minimizing tissue allocation to inter-lappet spaces that maintain paddle function due to boundary layer overlap
-Algebras of Classical Field Theories and the Batalin-Vilkovisky Formalism
We review in detail the Batalin-Vilkovisky formalism for Lagrangian field
theories and its mathematical foundations with an emphasis on higher algebraic
structures and classical field theories. In particular, we show how a field
theory gives rise to an -algebra and how quasi-isomorphisms between
-algebras correspond to classical equivalences of field theories. A
few experts may be familiar with parts of our discussion, however, the material
is presented from the perspective of a very general notion of a gauge theory.
We also make a number of new observations and present some new results. Most
importantly, we discuss in great detail higher (categorified) Chern-Simons
theories and give some useful shortcuts in usually rather involved
computations.Comment: v3: 131 pages, minor improvements, published versio
Topological Defects in Twisted Bundles of Two-Dimensionally Ordered Filaments
Twisted assemblies of filaments in ropes, cables and bundles are essential
structural elements in wide use in macroscopic materials as well as within the
cells and tissues of living organisms. We develop the unique, non-linear
elastic properties of twisted filament bundles that derive from generic
properties of two-dimensional line-ordered materials. Continuum elasticity
reveals a formal equivalence between the elastic stresses induced by bundle
twist and those induced by the positive curvature in thin, elastic sheets.
These geometrically-induced stresses can be screened by 5-fold disclination
defects in lattice packing, and we predict a discrete spectrum elastic energy
groundstates associated with integer numbers of disclinations in cylindrical
bundles. Finally, we show that elastic-energy groundstates are extremely
sensitive to defect position in the cross-section, with off-center
disclinations driving the entire bundle to buckle, adopting globally writhing
configurations.Comment: 4.1 pages; 3 figure
Native American Gaming: Promises and Prospects
The Indian Gaming Regulatory Act of 1988 was intended to provide a statutory basis for the growth of Indian gaming. This article explains that the intentions of the act, when coupled with court decisions and a competitive economic environment, may be the basis for federal intervention in the gaming industry, specifically for Native American gaming. The author reviews the history of programs and promises, the magnitude of the total gaming industry, and the role of Native American gaming
Stillbirth should be given greater priority on the global health agenda
Stillbirths are largely excluded from international measures of mortality and morbidity. Zeshan Qureshi and colleagues argue that stillbirth should be higher on the global health agenda
Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence
Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources
- …