1,751 research outputs found
Farmer experimentation for climate adaptation with triadic comparisons of technologies (tricot): a methodological guide
Triadic Comparisons of Technologies (tricot), is a new approach to test crop varieties and other technologies on-farm, under realistic conditions. Through simple and hands-on experimentation, the participating farmers identify innovations that will be of real benefit to them. Tricot is a ready-made methodology, serving both research, and the dissemination of varieties and other technologies and practices in highly variable areas. Through geographically distributed testing, tricot is able to provide information about geographic patterns in climate adaptation and help to speed up the identification of locally suitable technologies to respond to climate change. It provides a means to linktechnology development of research institutes to real-life experiences of farmers. It is supported by a digital platform that can be found at www.climmob.net. This publication provides a description of the methodology with guidelines for its implementation in the field
Traffic control in coherence-multiplexed networks
Coherence multiplexing (CM) is a relatively unknown form of optical CDMA, which is particulary suitable in medium bit rate, short-range optical networks like LANs. The main purpose of the technique is to allow multiple users to transmit through a common optical fiber simultaneously. When this number is too large, however, the BER will become unacceptably high. Therefore a protocol is needed to control the traffic. In this paper several protocols are presented. An adapted version of synchronous TDMA, two new protocols and a central control unit will be proposed and discussed. Finally, the protocols will be compared with respect to performance and practical implementation aspects
Do equal land and water rights benefit the poor?: Targeted irrigation development: The case of the Andhi Khola Irrigation Scheme in Nepal
Irrigation programs / Water rights / Poverty / Households / Surveys / Water allocation / Water distribution / Water users’ associations / Farmers / Landlessness / Land ownership
Adaptacion climatica mediante ensayos en finca: Evaluacion Participativa Masiva (EPM). Guia metodologica
La Evaluacion Participativa Masiva (EPM) es un nuevo enfoque para evaluar variedades y otras tecnologias agricolas en finca, bajo condiciones representativas. A traves de un proceso de experimentacion sencillo y practico, los agricultores identifican innovaciones que les benefician realmente. EPM es una metodologia completa que sirve tanto para la investigacion como para la distribucion de variedades y otras tecnologias agricolas en areas con condiciones variables. A traves de un esquema de pruebas distribuidas geograficamente, la metodología EPM puede proveer informacion sobre los patrones geograficos en la adaptacion climatica y ayudar a acelerar la identificacion de tecnologias apropiadas localmente para responder al cambio climatico. Provee una forma de conectar el desarrollo de nuevas tecnologias realizado por institutos de investigacion con las experiencias de los agricultores. El proceso de EMP es apoyado por una plataforma digital que se encuentra en www.climmob.net. Esta publicacion provee una descripcion de la metodología con lineamientos para su uso en el campo
Rings and Jets around PSR J2021+3651: the `Dragonfly Nebula'
We describe recent Chandra ACIS observations of the Vela-like pulsar PSR
J2021+3651 and its pulsar wind nebula (PWN). This `Dragonfly Nebula' displays
an axisymmetric morphology, with bright inner jets, a double-ridged inner
nebula, and a ~30" polar jet. The PWN is embedded in faint diffuse emission: a
bow shock-like structure with standoff ~1' brackets the pulsar to the east and
emission trails off westward for 3-4'. Thermal (kT=0.16 +/-0.02 keV) and power
law emission are detected from the pulsar. The nebular X-rays show spectral
steepening from Gamma=1.5 in the equatorial torus to Gamma=1.9 in the outer
nebula, suggesting synchrotron burn-off. A fit to the `Dragonfly' structure
suggests a large (86 +/-1 degree) inclination with a double equatorial torus.
Vela is currently the only other PWN showing such double structure. The >12 kpc
distance implied by the pulsar dispersion measure is not supported by the X-ray
data; spectral, scale and efficiency arguments suggest a more modest 3-4 kpc.Comment: 22 pages, 5 figures, 3 tables, Accepted to Ap
The accuracy of farmer-generated data in an agricultural citizen science methodology.
Over the last decades, participatory approaches involving on-farm experimentation have become more prevalent in agricultural research. Nevertheless, these approaches remain difficult to scale because they usually require close attention from well-trained professionals. Novel large-N participatory trials, building on recent advances in citizen science and crowdsourcing methodologies, involve large numbers of participants and little researcher supervision. Reduced supervision may affect data quality, but the “Wisdom of Crowds” principle implies that many independent observations from a diverse group of people often lead to highly accurate results when taken together. In this study, we test whether farmer-generated data in agricultural citizen science are good enough to generate valid statements about the research topic. We experimentally assess the accuracy of farmer observations in trials of crowdsourced crop variety selection that use triadic comparisons of technologies (tricot). At five sites in Honduras, 35 farmers (women and men) participated in tricot experiments. They ranked three varieties of common bean (Phaseolus vulgaris L.) for Plant vigor, Plant architecture, Pest resistance, and Disease resistance. Furthermore, with a simulation approach using the empirical data, we did an order-of-magnitude estimation of
the sample size of participants needed to produce relevant results. Reliability of farmers’ experimental observations was generally low (Kendall’s W0.174 to 0.676). But aggregated observations contained information and had sufficient validity (Kendall’s tau coefficient 0.33 to
0.76) to identify the correct ranking orders of varieties by fitting Mallows-Bradley-Terry models to the data. Our sample size simulation shows that low reliability can be compensated by engaging higher numbers of observers to generate statistically meaningful results, demonstrating the usefulness of the Wisdom of Crowds principle in agricultural research. In this first study on data quality from a farmer citizen science methodology, we show that realistic numbers of less than 200 participants can
produce meaningful results for agricultural research by tricot-style trials
Genetic diversity of maize (Zea mays L. ssp. mays) in communities of the western highlands of Guatemala: geographical patterns and processes.
This study concerns spatial genetic patterning, seed flow and the impact of modern varieties in maize populations in Chimaltenango, Guatemala. It uses a collection of 79 maize seed samples from farmers in the area and five samples derived from modern varieties. Bulked SSR markers employed with bulked samples (ten plants) were used. Genetic distances between populations based on these SSR data were used as a measure of co-ancestry. The study describes the genetic variation in space, assesses the association of maize diversity with spatial and environmental descriptors and quantitative traits, and provides a test of the impact of improved varieties. Maize diversity showed significant isolation-by-distance locally, but not regionally. This was interpreted as evidence for a difference between local and regional mechanisms of seed exchange; regional exchange is more related to innovation. There was also a significant association with altitude and ear/grain characteristics (related to racial classifications). Also, consistent evidence for the influence of modern varieties of maize was found, although its impact was limited spatially. It is argued that the spatial distributions of maize diversity are important to consider for germplasm collection, but should be seen as a recent outcome of dynamic processes
Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part I: design and performance analysis
A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband delays, and coherent optical combining. The electro-optical conversion is performed by means of single-sideband suppressed carrier modulation, employing a common laser, Mach-Zehnder modulators, and a common optical sideband filter after the OBFN. The unmodulated laser signal is then re-injected in order to perform balanced coherent optical detection, for the opto-electrical conversion. This scheme minimizes the requirements on the complexity of the OBFN, and has potential for compact realization by means of full integration on chip. The impact of the optical beamformer concept on the performance of the full receiver system is analyzed, by modeling the combination of the PAA and the beamformer as an equivalent two-port RF system. The results are illustrated by a numerical example of a PAA receiver for satellite TV reception, showing that—when properly designed—the beamformer hardly affects the sensitivity of the receiver
Phased array receive antenna steering system using a ring resonator-based optical beam forming network and filter-based optical SSB-SC modulation
A novel phased array receive antenna steering system is introduced. The core of this system is an optical ring resonator-based broadband, continuously tunable optical beam forming network (OBFN). In the proposed system architecture, filter-based optical single-sideband suppressed-carrier modulation and balanced coherent optical detection are used. \ud
Such architecture has significant advantages over a straightforward architecture using optical double-sideband modulation and direct optical detection, namely relaxed bandwidth requirements on the optical modulators and detectors, reduced complexity of the OBFN chip, and enhanced dynamic range. Initial measurements on an actual 1×8 OBFN chip and an optical sideband filter chip are presented. Both are realized in CMOS-compatible planar optical waveguide technology.\u
Design of a ring resonator-based optical beam forming network for phased array receive antennas
A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our goal is to deliver large bandwidth Ku-band connectivity between antennas, mount conformal to the airplane fuselage and on a geostationary satellite, respectively.This way it would be possible to bring live DVB-S television to airplane passengers. In this paper, we present recent research conducted on a 4 × 1 ring resonator-based OBFN test set-up. This OBFN has four optical input ports and one optical output port. It is tuned to provide the desired signal combination with optimal constructive interference between the modulated input signals from the PAA. Therefore, combining circuitry and delay elements are required. The OBFN is tuned by electrically heating tunable true time delay (TTD) elements. These are built using optical ring resonators (ORRs). By cascading multiple ORRs with different resonance frequencies, it is possible to create a TTD with a large bandwidth. Optical beam forming is used because it provides advantages over traditional beam forming methods. These advantages are: large bandwidth, EMI resistance, and, when integrated onto a single chip, compactness and low costs. The OBFN is created using planar optical waveguide technology and consists of the following building blocks: waveguides, Mach-Zehnder interferometers, (MZIs) couplers and ORRs. The tuning of the OBFN is done by an electronic control system using a microcontroller. Communication with a PC is possible using USB. To our knowledge, this is the first integrated ORR-based OBFN circuit for PAA satellite reception
- …
