40 research outputs found

    Giant intermolecular decay and fragmentation of clusters. Phys

    Get PDF
    In sharp contrast to molecules, electronic states of clusters with an excited intermediate-shell electron can efficiently decay via an intermolecular Coulombic mechanism. Explicit examples are presented using large scale ab initio propagator calculations. The mechanism is illustrated and its generality is stressed. [S0031-9007(97) PACS numbers: 36.40. Cg, 31.50. + w, 34.50.Gb Quantum states of electronic systems typically decay by photon and/or electron emission. Energetically low lying states decay radiatively while highly excited levels involving the excitation of inner-shell electrons decay more efficiently by emitting an electron (Auger decay). It is only for very deep inner-shell electrons of heavy elements that x-ray emission constitutes the prominent decay channel As mentioned above, the environment of the atom influences only moderately the lifetime of the deep vacancy (e.g., of a F1s vacancy). If at all, we can only expect interesting environmental effects on the total Auger decay rate to take place for vacancies in intermediate shells. However, a closer look at the energetics of the decay in typical molecules brings a problem to light. The ionization potential (IP) of a F2s electron in, say, the HF molecule, is about 40 eV Atomic and molecular clusters have been subject to continuous interest over many years We propose to use a different approach. The groups involved in the present study have acquired considerable experience in the ab initio computation of ionization The ionization and Auger spectra of several monomers and clusters have been computed using the methods described in Refs

    A standardized comparison of commercially available prion decontamination reagents using the Standard Steel-Binding Assay

    Get PDF
    Prions are comprised principally of aggregates of a misfolded host protein and cause fatal transmissible neurodegenerative disorders of mammals, such as variant Creutzfeldt–Jakob disease in humans and bovine spongiform encephalopathy in cattle. Prions pose significant public health concerns through contamination of blood products and surgical instruments, and can resist conventional hospital sterilization methods. Prion infectivity binds avidly to surgical steel and can efficiently transfer infectivity to a suitable host, and much research has been performed to achieve effective prion decontamination of metal surfaces. Here, we exploit the highly sensitive Standard Steel-Binding Assay (SSBA) to perform a direct comparison of a variety of commercially available decontamination reagents marketed for the removal of prions, alongside conventional sterilization methods. We demonstrate that the efficacy of marketed prion decontamination reagents is highly variable and that the SSBA is able to rapidly evaluate current and future decontamination reagents

    Updated projections of future vCJD deaths in the UK

    Get PDF
    BACKGROUND: Past projections of the future course of the vCJD epidemic in the UK have shown considerable uncertainty, with wide confidence bounds. However, recent vCJD case data have indicated a decrease in the annual incidence of deaths over the past two years. METHODS: A detailed survival model is fitted to the 121 vCJD deaths reported by the end of 2002 stratified by age and calendar time to obtain projections of future incidence. The model is additionally fitted to recent results from a survey of appendix tissues. RESULTS: Our results show a substantial decrease in the uncertainty of the future course of the primary epidemic in the susceptible genotype (MM-homozygous at codon 129 of the prion protein gene), with a best estimate of 40 future deaths (95% prediction interval 9–540) based on fitting to the vCJD case data alone. Additional fitting of the appendix data increases these estimates (best estimate 100, 95% prediction interval 10–2,600) but remains lower than previous projections. CONCLUSIONS: The primary vCJD epidemic in the known susceptible genotype in the UK appears to be in decline

    Graphical Approach to Model Reduction for Nonlinear Biochemical Networks

    Get PDF
    Model reduction is a central challenge to the development and analysis of multiscale physiology models. Advances in model reduction are needed not only for computational feasibility but also for obtaining conceptual insights from complex systems. Here, we introduce an intuitive graphical approach to model reduction based on phase plane analysis. Timescale separation is identified by the degree of hysteresis observed in phase-loops, which guides a β€œconcentration-clamp” procedure for estimating explicit algebraic relationships between species equilibrating on fast timescales. The primary advantages of this approach over Jacobian-based timescale decomposition are that: 1) it incorporates nonlinear system dynamics, and 2) it can be easily visualized, even directly from experimental data. We tested this graphical model reduction approach using a 25-variable model of cardiac Ξ²1-adrenergic signaling, obtaining 6- and 4-variable reduced models that retain good predictive capabilities even in response to new perturbations. These 6 signaling species appear to be optimal β€œkinetic biomarkers” of the overall Ξ²1-adrenergic pathway. The 6-variable reduced model is well suited for integration into multiscale models of heart function, and more generally, this graphical model reduction approach is readily applicable to a variety of other complex biological systems

    Observation of electron transfer mediated decay in aqueous solution

    Get PDF
    Photoionization is at the heart of X ray photoelectron spectroscopy XPS , which gives access to important information on a sample s local chemical environment. Local and non local electronic decay after photoionization in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively have been well studied. However, electron transfer mediated decay ETMD , which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase. Here we report the experimental observation of ETMD in an aqueous LiCl solution by detecting characteristic secondary low energy electrons using liquid microjet soft XPS. Experimental results are interpreted using molecular dynamics and high level ab initio calculations. We show that both solvent molecules and counterions participate in the ETMD processes, and different ion associations have distinctive spectral fingerprints. Furthermore, ETMD spectra are sensitive to coordination numbers, ion solvent distances and solvent arrangemen

    Quantitative Detection and Biological Propagation of Scrapie Seeding Activity In Vitro Facilitate Use of Prions as Model Pathogens for Disinfection

    Get PDF
    Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≀101- to β‰₯105.5-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants

    A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species

    Get PDF
    Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies

    Resistance of Bovine Spongiform Encephalopathy (BSE) Prions to Inactivation

    Get PDF
    Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrPSc from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 106-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used

    Coumarin-phalloidin: a new actin probe permitting triple immunofluorescence microscopy of the cytoskeleton

    No full text
    7-Diethylamino-3-(4-isothiocyanotophenyl)-4-methylcoumarin (CPITC) was coupled to amino-methyldithiolanophalloidin to produce a new phalloidin derivative, coumarin-phalloidin, fluorescent in the blue region of the spectrum. Coumarin-phalloidin binds to actin with around 100-fold less affinity than unconjugated phalloidin, but with enough avidity to make it a useful stain for actin filaments. Appropriate filter combinations permit triple immunofluorescence microscopy of the cytoskeleton with fluorescein and rhodamine conjugates together with coumarin-phalloidin
    corecore