146 research outputs found

    Evaluating the impact of U.S. Historical Climatology Network homogenization using the U.S. Climate Reference Network

    Get PDF
    Numerous inhomogeneities including station moves, instrument changes, and time of observation changes in the U.S. Historical Climatological Network (USHCN) complicate the assessment of long-term temperature trends. Detection and correction of inhomogeneities in raw temperature records have been undertaken by NOAA and other groups using automated pairwise neighbor comparison approaches, but these have proven controversial due to the large trend impact of homogenization in the United States. The new U.S. Climate Reference Network (USCRN) provides a homogenous set of surface temperature observations that can serve as an effective empirical test of adjustments to raw USHCN stations. By comparing nearby pairs of USHCN and USCRN stations, we find that adjustments make both trends and monthly anomalies from USHCN stations much more similar to those of neighboring USCRN stations for the period from 2004 to 2015 when the networks overlap. These results improve our confidence in the reliability of homogenized surface temperature records

    Expression of the Aspergillus bimG gene in Neurospora crassa

    Get PDF
    In A. nidulans the bimG gene codes for the catalytic subunit of protein phosphatase 1. The wild type bimG gene was transformed into N. crassa and expressed under the direction of the alcA promoter. The heterologous bimG mRNA and protein were detected in the transformants by RT-PCR and Western blotting, respectively. However, the transformation did not result in detectable changes in phenotype. This work demonstrates that the alcA promoter, a conditional gene expression system widely used in both Aspergillus and higher plants, also functions in N. crassa

    Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA

    Get PDF
    We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20–30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section

    Background complexity can mitigate poor camouflage

    Get PDF
    Avoiding detection through camouflage is often key to survival. However, an animal's appearance is not the only factor affecting conspicuousness: background complexity also alters detectability. This has been experimentally demonstrated for both artificially patterned backgrounds in the lab and natural backgrounds in the wild, but only for targets that already match the background well. Do habitats of high visual complexity provide concealment to even relatively poorly-camouflaged animals? Using artificial prey which differed in their degrees of background matching to tree bark, we were able to determine their survival, under bird predation, with respect to the natural complexity of the background. The latter was quantified using low-level vision metrics of feature congestion (or 'visual clutter') adapted for bird vision. Higher background orientation clutter (edges with varying orientation) reduced the detectability of all but the poorest background-matching camouflaged treatments; higher background luminance clutter (varying achromatic lightness) reduced average mortality for all treatments. Our results suggest that poorer camouflage can be mitigated by more complex backgrounds, with implications for both camouflage evolution and habitat preferences.Data file is: Rowe_at_al_data.txt Format: tab-delimited text Created: 24/03/2021 Description of variables (columns) Block "Experimental block (different part of study site on different dates): factor with 27 levels, 1 to 27." Treatment "Experimental treatment (varied average luminance): factor with 9 levels (1 = darkest, 9 = lightest)." Replicate "Replicate number, factor with 10 levels, nested within Block and Treatment." Censored "Binary code: 1 = bird predation, 0 = disappearance for any other reason (e.g. invertebrate predation) or survival to the end of the trial." Day "Day of disappearance: numeric, taking values 0 to 5. 0 indicates the replicate was lost before deployment (n=3)." Notes Plain text description of fate of target. contrast.fc Luminance contrast metric of feature congestion. colour.fc Colour contrast metric of feature congestion. orientation.fc Edge orientation metric of feature congestion. Funding provided by: Biotechnology & Biological Sciences Research Council, UKCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BB/S00873X/

    Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos

    Get PDF
    Ultrahigh energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultrahigh energy processes in the Universe. These particles, with energies above 1016 eV, interact very rarely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. The ARA detector is currently being constructed at the South Pole. It is designed to use the Askaryan effect, the emission of radio waves from neutrino-induced cascades in the South Pole ice, to detect neutrino interactions at very high energies. With antennas distributed among 37 widely separated stations in the ice, such interactions can be observed in a volume of several hundred cubic kilometers. Currently three deep ARA stations are deployed in the ice, of which two have been taking data since the beginning of 2013. In this article, the ARA detector “as built” and calibrations are described. Data reduction methods used to distinguish the rare radio signals from overwhelming backgrounds of thermal and anthropogenic origin are presented. Using data from only two stations over a short exposure time of 10 months, a neutrino flux limit of 1.5 × 10−6 GeV=cm2=s=sr is calculated for a particle energy of 1018 eV, which offers promise for the full ARA detector

    Searches for Sterile Neutrinos with the IceCube Detector

    Get PDF
    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous νμ or ¯νμ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin 22θ24≤0.02 at Δm2∼0.3 eV2 at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |Ue4|

    Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube

    Get PDF
    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 109 GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×105 GeV to above 1011 GeV Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×106 GeV, the highest neutrino energy observed so far, and (7.7±2.0)×105 GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date

    SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR

    Get PDF
    IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 (E/PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (1016 eV) arriving within a small solid angle. The all-sky search method covers from −90° to approximately −50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios

    Search for astrophysical tau neutrinos in three years of IceCube data

    Get PDF
    The IceCube Neutrino Observatory has observed a diffuse flux of TeV-PeV astrophysical neutrinos at 5.7σ significance from an all-flavor search. The direct detection of tau neutrinos in this flux has yet to occur. Tau neutrinos become distinguishable from other flavors in IceCube at energies above a few hundred TeV, when the cascade from the tau neutrino charged current interaction becomes resolvable from the cascade from the tau lepton decay. This paper presents results from the first dedicated search for tau neutrinos with energies between 214 TeV and 72 PeV in the full IceCube detector. The analysis searches for IceCube optical sensors that observe two separate pulses in a single event—one from the tau neutrino interaction and a second from the tau decay. No candidate events were observed in three years of IceCube data. For the first time, a differential upper limit on astrophysical tau neutrinos is derived around the PeV energy region, which is nearly 3 orders of magnitude lower in energy than previous limits from dedicated tau neutrino searches

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.SCOAP
    corecore