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Abstract  28 

Avoiding detection through camouflage is often key to survival. However, an animal’s 29 

appearance is not the only factor affecting conspicuousness: background complexity also 30 

alters detectability. This has been experimentally demonstrated for both artificially 31 

patterned backgrounds in the lab and natural backgrounds in the wild, but only for targets 32 

that already match the background well. Do habitats of high visual complexity provide 33 

concealment to even relatively poorly-camouflaged animals? Using artificial prey which 34 

differed in their degrees of background matching to tree bark, we were able to determine 35 

their survival, under bird predation, with respect to the natural complexity of the 36 

background. The latter was quantified using low-level vision metrics of feature congestion 37 

(or ‘visual clutter’) adapted for bird vision. Higher background orientation clutter (edges 38 

with varying orientation) reduced the detectability of all but the poorest background-39 

matching camouflaged treatments; higher background luminance clutter (varying 40 

achromatic lightness) reduced average mortality for all treatments. Our results suggest that 41 

poorer camouflage can be mitigated by more complex backgrounds, with implications for 42 

both camouflage evolution and habitat preferences.  43 

 44 

Key words: background complexity, camouflage, detectability, visual search, protective 45 

coloration, visual clutter 46 

 47 

1. Introduction 48 

Remaining undetected is frequently important for a number of reasons, including predator-49 

prey interactions, avoiding social harassment, and seeking sneak mating opportunities [1]. 50 

Camouflage is the most widespread means of achieving concealment ‘in plain sight’,  51 

arguably the most critical factor being the similarity of the object’s colour and pattern to 52 

that of its immediate background [2-5]. However, a  factor extrinsic to the camouflaged 53 

object also affects its concealment: background complexity [6-10]. Merilaita [6] argued, 54 

based on results from neural network models, that the visual complexity of the background 55 

is a key determinant of detectability, and that higher background complexity relaxes the 56 

requirement for precise background matching. He proposed that this is because more 57 

complex backgrounds impose higher information-processing costs, and that predators are 58 

limited in their processing capacity; we return to this issue in the Discussion. Analogously, 59 

the effect of many, highly salient, visual features in the background, known as ‘visual 60 

clutter’, has been investigated in humans in applied contexts such as visual display design 61 

[11, 12], and also in a few other species. First, by monitoring predation on artificially 62 

patterned backgrounds by birds or fish [7-9] and second, by measuring wild avian predation, 63 

and human visual search, for artificial targets against natural backgrounds [10]. Although 64 

these studies demonstrate a detrimental effect of background complexity on detection, 65 

they do not tell us how important it is relative to matching the background. Somewhat 66 

surprisingly, Xiao & Cuthill’s [10] experiment suggested that, for birds, background 67 
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complexity was far more important than matching the immediate background. A key 68 

limitation of Xiao & Cuthill [10] is that the effect of background complexity was 69 

demonstrated for only a single target colour: that of the average background. This leaves 70 

open the question of whether the benefits of background complexity for concealment are 71 

independent of background matching, as Merilaita [6] suggested, or whether some level of 72 

background matching is required. Murali et al. [13] have addressed this question using 73 

humans searching on artificial backgrounds, concluding that background heterogeneity aids 74 

concealment, but not when the targets fail to match the background. However, whether 75 

such effects apply to non-human predators in the field, and the sort of complexity variation 76 

seen in natural backgrounds, need to be addressed. Our present study fills that gap, by 77 

systematically varying the degree of background matching and establishing the limits of 78 

background complexity’s ability to impede detection by wild predators searching on natural 79 

backgrounds in the field. 80 

Here, we determine the extent to which background complexity can mitigate poor 81 

camouflage. Understanding the interaction between conspicuousness and background 82 

complexity is important for two main reasons: the first is to understand what pattern of 83 

camouflage evolution will be favoured in different habitats [6]; the second is to understand 84 

which habitats animals prefer if complexity does indeed decrease detection[9]. Most 85 

habitats are heterogenous in colour and pattern, and many animals move between visually 86 

different habitats. So an open question is whether it is better to have coloration that is a 87 

compromise between different backgrounds, or specialised to one [6, 14-16]. Modelling 88 

suggests that a critical factor is the trade-off between improved survival on one background 89 

and reduced survival on another [15, 17]. Background complexity will affect that trade-off if 90 

it mitigates any mismatch of specialist camouflage to alternative backgrounds, and of 91 

compromise strategies to all backgrounds. Furthermore, animals benefiting from 92 

concealment could potentially select backgrounds with higher complexity [9] and those 93 

benefiting from salience (for signalling) could select habitats with lower complexity [18].  94 

By monitoring the survival of artificial prey ‘moths’ in natural woodland, we examined the 95 

effect of natural levels of background complexity ([as in 10]) on the survival of different 96 

degrees of background matching ([as in 19]). By recording the frequency of colours across a 97 

large sample of European oak tree (Quercus robur) bark within the woodland, we produced 98 

treatments which spanned the background luminance frequency distribution. This allowed 99 

us to test whether higher background complexity interferes with detection of all targets 100 

regardless of how well they match the background, or whether complexity cannot mitigate 101 

poor camouflage. We predicted that high background complexity would only reduce 102 

detectability for targets that already match the background well. By manipulating one 103 

simple feature,  the average luminance or achromatic lightness, that is known to influence 104 

the salience of camouflaged objects in our experimental paradigm [20], we sought to 105 

determine just how mismatched the target needs to be to the background for complexity to 106 

cease to affect detectability. Whether the effect is sudden or continuous is an empirical 107 

question that our experiment should help address. To measure background complexity we 108 

used feature congestion [11, 12], which is based on features from the early stages of visual 109 

processing, namely variation in luminance, colour and edge orientation. It has been shown 110 
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to predict interference in both human and bird search [10, 11]. For avian colour vision, we 111 

used Xiao & Cuthill’s [10] adaptation of the model of Rosenholtz et al. [11, 12]. 112 

 113 

2.  Material and methods 114 

(a) Stimuli 115 

The targets were designed to resemble a non-specific Lepidopteran: right-angle triangles at 116 

45 mm wide × 32 mm high. Nine treatments were produced, all having the average hue of 117 

oak bark but varying in achromatic lightness. The colour information was derived from 1000 118 

calibrated photographs of oak tree bark, taken in the same woods as the experiment was 119 

carried out in (Leigh Woods National Nature Reserve, North Somerset, UK, 2°38.6′ W, 120 

51°27.8′ N) the previous year. Photographs were taken at head height, approximately one 121 

metre away from the oak trees, of areas of bark that were free from lichen and not in direct 122 

sunlight. The camera was a Nikon D3200 DSLR camera with 35 mm Nikon AF-S DX NIKKOR 123 

f/1.8G lens (Nikon Corp., Tokyo, Japan), set at ISO 1600, f8 and automatic integration time. 124 

A colour standard, Colorchecker Passport (XRite, Grand Rapids, Michigan, USA), was pinned 125 

to the trees in the bottom left-hand corner of the frame for later calibration (as in [21, 22]). 126 

These photographs were linearised and normalised to control for variation in light intensity 127 

and colour balance, and then mapped to the cone photon-capture colour space of a typical 128 

passerine predator, using cone spectral sensitivity data for the blue tit (Cyanistes caeruleus) 129 

[23]. The procedures were carried out using custom MATLAB scripts (MATLAB 2019b, The 130 

MathWorks, Natick, MA, USA), using the same procedures as described in [22, 24] and see 131 

Supplementary Material. One hundred random target-sized samples were taken from each 132 

photograph (the xy coordinates being pairs of random numbers drawn from a uniform 133 

distribution), and the average colour for each was calculated. The measure of lightness was 134 

the photon catch of the avian double cones [25], scaled from 0 (black) to 1 (white), and two 135 

opponent channels to represent the relevant variation in hue: red-green (the contrast 136 

between mediumwave- and longwave-sensitive cones) and blue-yellow (the contrast 137 

between shortwave- and the average of mediumwave- and longwave-sensitive cones), both 138 

also scaled to lie between 0 and 1 ([for further details see 10]). Neither oak bark nor the 139 

printed targets reflected ultraviolet, so this component of avian colour could be ignored [for 140 

bark reflectance spectra see 26]. The ‘avian luminance’ of the 100,000 samples ranged 141 

between 0.07 and 0.85, and had two modes (Figure 1). The treatments of 0.05, 0.15, 0.25, 142 

0.35, 0.45, 0.55, 0,.65, 0.75, 0.85 luminance units were chosen to span the range from 143 

exceedingly rare and dark to exceedingly rare and light, with treatments also approximating 144 

the two peaks and the trough between them (Figure 1). Validation of the intended 145 

manipulation of target-background contrast is provided in the Supplementary Material. All 146 

treatments had the same red-green and blue-yellow contrasts (0.013 and -0.155 147 

respectively), matching the average of the 100,000 bark samples, so they varied in 148 

tone/lightness but not hue. These targets were printed on waterproof paper (Rite-in-the-149 

Rain, J.L. Darling LLC, Tacoma, WA, USA) using a calibrated printer (Canon imageRUNNER 150 

ADVANCE C5535i; Canon Inc., Tokyo, Japan). 151 
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 152 

Figure 1- A histogram showing the frequency of the avian luminance of 100,000 oak tree 153 

(Quercus robus) bark samples. The red dotted lines show where on the distribution the 154 

treatment luminance values fall, with the darkest designated as treatment 1 and the lightest 155 

as 9.  156 

(b) Procedure 157 

The experiments were run from October to December 2020. The general experimental 158 

protocol followed that of Cuthill et al. [27], with the artificial ‘moths’ pinned to mature oak 159 

trees along non-linear transects with a dead mealworm (Tenebrio molitor) larva frozen at 160 

−80°C then thawed) underneath the ‘wings’, with a small portion showing. Each transect 161 

comprised a block within an overall randomised block design. The transects varied in length 162 

from ca 500 to 1000 m, according to variation in oak tree density within different areas of 163 

the woodland. The meandering nature of the transects would make them hard to define in 164 

terms of area, but they did not overlap each other. Younger oak trees (trunk circumference 165 
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at head height < 0.9 m) were avoided, with no more than one target per tree, pinned at 166 

roughly head-height, facing away from paths to minimise interference from the public. Once 167 

pinned, a photograph was taken of the target and its respective background; four mobile 168 

phones were used, two of which were iPhones (iPhone 8 and 11, Apple Inc., Cupertine, CA, 169 

USA) and two of which were Samsungs (Samsung SM-A405FN and SM-G970F, Samsung 170 

Group, Seoul, South Korea). The known size and reflectance of the target, coupled with 171 

calibrations based on photographs of a colour chart (Colorchecker Passport; X-Rite, Grand 172 

Rapids, MI, USA), were used to normalise and linearise the photographs, then map them to 173 

avian colour space.  These photos were then used to extract the same measures of 174 

background complexity as in Xiao & Cuthill [10], using Rosenholtz’s principles of feature 175 

congestion [11, 12]. The calculations were carried out using the custom MATLAB scripts 176 

described and explained in [24], based on the original Matlab functions of Rosenholtz and 177 

colleagues (https://dspace.mit.edu/handle/1721.1/37593). Rosenholtz et al.’s “feature 178 

congestion” can be thought of as a perceptual measure of the variation in three 179 

components of a visual scene: luminance, colour and edge orientation. A scene with high 180 

levels of local contrast in brightness will score highly on the luminance clutter measure; 181 

analogously, spatial variation in colour contributes to the colour clutter metric, and variation 182 

in the orientation of edges (lines) contributes to the orientation clutter metric.  “Local 183 

contrast” is in fact calculated at three spatial resolutions (i.e. capturing variation in each of 184 

coarse, medium, and fine detail) and summed to provide a single measure of each of what 185 

Rosenholtz et al. [11, 12] call contrast (luminance), colour and edge orientation ‘clutter’. The 186 

feature congestion metric is a weighted sum of the three, based on empirically derived 187 

estimates of the contribution of each to perceived differences. Xiao & Cuthill [10] showed 188 

that the orientation clutter measure of perceived image complexity, and an equivalent for 189 

avian vision, predicted the detectability of triangular (notionally moth-shaped) targets on 190 

natural bark backgrounds, for humans and birds respectively. The supplementary material 191 

of Xiao & Cuthill [10, 24] has a figure that, in a simple intuitive way, demonstrates how the 192 

Rosenholtz et al. clutter metrics relate to image features. 193 

Targets were checked at 24, 48, 72 and 96 h, with disappearance of all or most of the 194 

mealworm being marked as avian predation, and predation by invertebrates (spiders, slugs, 195 

wasps) and ‘survival’ up to 96 h being marked as ‘censored’. Invertebrate predation was 196 

determined by either direct observation (one instance of a wasp), a hollowed-out 197 

exoskeleton (spiders) or the presence of mucus near the target (slugs). The large sample size 198 

that our method allows precludes direct observation of most predation events, so we 199 

cannot be certain that birds were responsible for all events scored as bird predation. 200 

However, one would expect birds to be the predominant visual predator for such prey in 201 

winter in UK woodland, and non-visual predators would only add noise to our data. In each 202 

block, 90 targets were placed (10 replicates of each of the nine treatments). Overall, 27 203 

blocks were completed, totalling 2,430 targets. 204 

(c) Analysis 205 

Mixed-effects Cox regression was applied using the ‘coxme’ function from the ‘coxme’  R 206 

package (Therneau, 2020; R Core Team, 2020). Block was fitted as a random effect, 207 
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treatment and the three metrics of feature congestion of the background were treated as 208 

fixed effects. The significance of effects were tested using an analysis of deviance comparing 209 

the unexplained variation of models with and without the factor in question, tested against 210 

a χ2 distribution.  Starting with a maximal model including interactions between treatment 211 

and each of the feature congestion metrics, models were step-wise simplified based on non-212 

significance of terms. Effect sizes are presented as odds ratios with 95% confidence 213 

intervals. Treatment 5 was chosen as the baseline for comparison with other treatment 214 

levels, as this lay close to the mean of the whole distribution (0.48; see also Figure S1 in the 215 

Supplementary Material) and was also close to the luminance of the single treatment used 216 

in Xiao & Cuthill [10]. 217 

3. Results 218 

Overall, 27% of targets were censored (8.6% eaten by spiders, 6.6% by slugs, 3.3% lost, and 219 

8.7% remained uneaten after 96 h). The main effect of treatment, ignoring background 220 

complexity, affects target mortality in a pattern that loosely mirrors the frequency of each 221 

luminance in the background (χ2 = 376.41, d.f. = 8, p < 0.001; compare Figure 2 with Figure 222 

1). Targets which have a more common background shade (treatment 2 to 7) have a lower 223 

relative mortality than rarer shades. 224 

 225 
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 226 

Figure 2- More common background shades have enhanced survival. Odds ratio plot for the 227 

relative survival of each treatment compared to treatment 5, which lies near to the mean of 228 

the whole distribution. Treatments with 95% confidence intervals not overlapping the red 229 

dashed line have a lower relative survival (< 1) than treatment 5. Odds ratios and 95% 230 

confidence intervals (bars) were estimated using a mixed-effects Cox regression. 231 

We then examined how the metrics of background complexity altered the survival of the 232 

targets; all steps in the statistical modelling can be found in the Supplementary Material. 233 

There was no significant interaction between treatment and colour clutter (χ2 = 5.09, d.f. = 234 

8, p = 0.748), treatment and luminance clutter (χ2 = 10.05, d.f. = 8, p = 0.262), or a main 235 

effect of colour clutter (χ2 = 0.00, d.f. = 8, p = 0.979). However, the interaction between 236 

treatment and orientation clutter and the main effect of luminance clutter remained in the 237 

minimal adequate model (χ2 = 57.04, d.f. = 8, p < 0.001 and χ2 = 22.89, d.f. = 1, p < 0.001, 238 

respectively). Survival was higher with greater luminance clutter (odds ratio 0.866, 95% c.i. 239 

0.818 to 0.918). The effect of orientation clutter was also found to boost survival, but only 240 
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for those treatments with commoner background shades (treatments 2 to 7), with no 241 

significant effect for the treatments representing very rare shades, both dark (1) and light 242 

(8, 9); see Figures (3a,b). 243 

244 
Figure 3- Odds ratios of the effect of (a) luminance clutter and (b) orientation clutter on the 245 

relative survival of the treatments. Background complexity only enhances survival for 246 

targets that match the background to some degree (treatment 5 is close to the average 247 

background luminance, with treatment 1 much darker, and treatments 8 and 9 much 248 

lighter, than any background colours). The red dotted line signifies no effect (= 1); data 249 

above the line has a higher relative survival on more complex bark (> 1). Odds ratios and 250 

95% confidence intervals were estimated using a mixed-effects Cox regression. 251 

4. Discussion 252 

Our results support Merilaita’s [6] conclusion, based on neural network modelling, that 253 

background complexity has an important influence on detectability, and that higher 254 

background complexity enhances the benefits of background-matching camouflage. When 255 

examining the three visual characteristics of feature congestion (luminance, colour, and 256 

orientation of edges), we found that two of them had a significant effect on predation rates. 257 

A higher background orientation clutter reduced the detectability of all but the rarest 258 

background-matching camouflaged treatments (treatment 1, 8 and 9) (Figure 3b). With 259 

regards to a higher background luminance clutter, there was also a pattern of lower 260 

mortality (Figure 3a). This effect was similar to, but weaker than, that seen with orientation 261 

clutter, but with no detectable treatment-by-background interaction. Therefore, unlike 262 

orientation clutter, we cannot confidently conclude that the concealment benefits of high 263 

background luminance contrast disappear for rarer background matching samples. The 264 

effect of orientation clutter has been previously found in experiments involving humans and 265 

wild birds [10]. Although luminance clutter was not significant in that study, we note that 266 

our sample size was an order of magnitude greater, so capable of detecting smaller effects.  267 

We make no claims that orientation clutter will be the most important factor in all 268 

situations; oak bark is characterised by deep linear ridges, and our targets have linear edges, 269 

so an effect on the signal-to-noise ratio in the domain of edge detection is expected. Oak 270 
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bark also has low chromatic variation (mainly different shades of brown), so it will be 271 

interesting to carry out analogous experiments with backgrounds, and targets, with 272 

different chromatic and structural characteristics. 273 

A corollary of background complexity aiding concealment is that background complexity 274 

mitigates less-than-perfect camouflage [6]. Targets which are matched to at least some of 275 

the background are less detectable on visually complex backgrounds than those on 276 

backgrounds of lower complexity. These findings have implications for habitat selection and 277 

thus animal distributions. If an animal benefits from concealment, all things being equal, it 278 

should choose a complex background [9].  Conversely, those benefiting from 279 

conspicuousness (e.g. to convey a visual signal) should choose to be seen against a less 280 

complex background to maximise their saliency [28]. Habitat choice with respect to habitat 281 

complexity could be an effective means of changing the balance between salience and 282 

crypsis [29], with different costs and benefits from changing appearance per se. We also 283 

found that the rarest background shades were little affected by the complexity of the 284 

background. Background complexity does not mitigate a very poor match to the 285 

background. 286 

Moving beyond the effect of background complexity, on average the treatments with more 287 

common background shades survived better than rarer shades (Figure 2). This is expected 288 

as, all things being equal, the best camouflage strategy is expected to be the most probable 289 

background sample [19]. Settling at random (as in our experiment), a common sample has a 290 

higher chance of being against a background that is a similar colour to itself, reducing 291 

detectability. In our data, survival generally matched the peaks in background luminance 292 

(Figures 1 and 2), although there was no detectable dip in survival in treatment 5 compared 293 

to 4 and 6, as might be expected from the bimodal luminance distribution (Figure 1). This 294 

could be a lack of statistical power (although our sample size was large, the benefits of a 295 

precise match to the background may be small), or an example of where there is an 296 

advantage to a ‘compromise’ strategy intermediate between the two modal background 297 

shades [14, 15, 17, 30]. 298 

In summary, the experiments of Murali et al. [13], for humans searching on artificial 299 

backgrounds, and our findings – using natural backgrounds –  suggest that background 300 

complexity alters the detectability of background-matched targets. This is true even for 301 

those targets which have relatively poor, but not the poorest, background matching. This 302 

suggests that visual complexity can play a role in the evolution of camouflage in 303 

heterogenous environments [6] and can mitigate the costs of a poorer match. One caveat is 304 

that none of our targets were maximally cryptic (all lacked patterning) and tree bark is 305 

relatively homogeneous in comparison with other natural substrates (e.g. leaf litter); it 306 

would be of interest to see if similar trends obtain for such environments. Animals could 307 

also make habitat choices based on visual clutter, selecting habitats of higher complexity for 308 

concealment and lower complexity for signalling. This prediction deserves to be tested. 309 

Beyond biology, the results are also relevant to understanding human visual search in 310 

natural environments, and extending approaches familiar to those in applied psychology 311 

and ergonomics (e.g. with regard to visual displays) to more naturalistic tasks. 312 
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Supplementary Methods 416 

 417 

Where indicated with quotation marks, much of the information that follows is taken, with 418 

permission, from [1]. The presence of ellipses (“…”) indicates deletion of irrelevant material 419 

(e.g. reference to a figure which is numbered differently from the current paper) and italic font 420 

indicates insertion of new text that was not present in [1] but are necessary to make 421 

grammatical sense in the current context. 422 

 423 

“The targets, being of fixed and known dimensions, were used to resize all images to a 424 

common scale (all images were downsized such that the analysed area… was 256 x 256 425 

pixels; thus image-processing time was not a limiting factor in analysis). Because digital 426 

cameras often show a non-linear relationship between the pixel value recorded and changes 427 

in light intensity, the images were first calibrated to linearize the RGB pixel values’ relationship 428 

with light intensity [2]. A Gretag-Macbeth Mini-Colorchecker chart (X-Rite, Grand Rapids, 429 

Michigan, USA) was used as a colour standard in the images, allowing us to covert the 430 

camera’s RGB values to linearized and device-independent sRGB. For human vision, the 431 

standardised sRGB values would be converted to L*a*b* colour space (CIELAB 1976; 432 

Commission Internationale de l'Eclairage; http://cie.co.at). CIELAB colour space represents 433 

mailto:zr17137@bristol.ac.uk
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colour in triplet coordinates of, first, lightness and, second, two of hue that approximate the 434 

red-green and yellow-blue opponent channels of humans [3]. It has the advantage that 435 

Euclidean distances in the colour space approximate perceived colour differences. This colour 436 

space is the result of decades of psychophysical experiments, modelling and arguments (it is 437 

still an approximation that does not hold under some conditions), so it is no surprise that there 438 

is no avian CIELAB. However, we constructed an equivalent colour space for a generalized 439 

passerine bird (these being the main avian predators of our targets), following the method of 440 

Stevens & Cuthill [4]. sRGB data were converted to photon catches of blue tit UV, S, M and L 441 

single cones, and double cones [5] using a standard D65 daylight illuminant [3]. D65 was used, 442 

rather than for example woodland shade [6] because, at the time and place of carrying out the 443 

experiment (winter), most targets were illuminated by a mixture of skylight and direct sun 444 

rather than being in shade. The double cone photon catch was used as a surrogate for 445 

luminance (the L in L*a*b*); the ratio of (L – M) to (M + L) photon catch as a red-green opponent 446 

channel; the ratio of (M + L – 2*S) to (S + M + L) photon catch as a yellow-blue opponent 447 

channel. Each channel/dimension was scaled to lie between 0 and 1 (for L, black = 0 and 1 = 448 

white; for a, 0 = green, 1 = red; for b, 0 = blue, 1 = yellow). Luminance contrast was calculated 449 

as the distance in the L, or surrogate L dimension; chromatic contrast was calculated as the 450 

Euclidean distance in the 2D L*a*b*, or surrogate L*a*b*, chromatic space.” 451 

 452 

“Complexity of the tree bark was calculated using … feature congestion metrics [7, 8]. The 453 

logic behind feature congestion is that cluttered scenes are ones in which there are many 454 

features similar to features in the target. The difficulty of detecting a target increases as 455 

background features that are similar to the target’s features increase in number. This parallels 456 

the effect of distractors on performance in visual search tasks where the field of view contains 457 

only discrete objects rather than a texture. In order to extract relevant information from its 458 

surrounding, an animal needs information about rapid changes from one part of the visual 459 

scene to another (which will relate to object boundaries, or that specify the structure of 460 

objects). The scale of intensity change is determined by the range of variation in the features 461 

processed in early vision. Thus, the main measure of feature congestion is rapid change in 462 

luminance, chroma and orientation of lines or “blobs” (an edge detector responds to points as 463 

“short lines” of no particular orientation, often called blobs in the computational vision 464 

literature). In non-technical terms, feature congestion estimates the amount of luminance and 465 

chromatic variation around the target, and orientation congestion the variation in the 466 

orientation of edges in the bark surrounding a target. Targets near rapid changes in luminance, 467 

chroma and edge-orientation are predicted to be harder to detect than targets further from 468 

such ‘clutter’. … An intuitive illustration of what the feature congestion metrics measure is 469 
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provided in figure S1; the application to experimental images is shown in figure S2). The 470 

Rosenholtz et al. [7, 8] functions operate on a transformation of a calibrated RGB photograph 471 

to L*a*b* colour space. Luminance and orientation clutter calculations are based on the L 472 

dimension; chromatic clutter is based on the a and b dimensions. Our equivalent for a bird 473 

instead passes image data in our avian surrogate L*a*b* colour space, as described above, 474 

to the Rosenholtz et al. [7, 8] functions.” 475 

 476 

“All computations used the Image Processing Toolbox in Matlab [9] plus Rosenholtz et al.’s 477 

functions (available at http://hdl.handle.net/1721.1/37593). The latter also provide a weighted 478 

composite metric of feature congestion based on a weighted sum of luminance, chroma and 479 

orientation clutter. Because the weights are unknown for birds, we analysed the potential 480 

influence of the three feature congestion metrics separately…”. 481 

 482 

 483 

Figure S1 Intuitive illustration of the feature congestion metrics applied to a ‘Mondrian’ image. 484 

Left to right: (i) original ‘Mondrian’, (ii) the map of rapidly changing luminance, (iii) the map of 485 

rapidly changing colour, and (iv) the map of rapidly changing edge orientations. 486 

  487 
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 488 

489 

 490 
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491 

 492 

Figure S2 Examples of different treatments and different bark complexities. (a) Average 493 

bark colour (treatment 5), complex bark; (b) Average bark colour (treatment 5), simpler bark; 494 

(c) Lightest colour (treatment 9), complex bark; (c) Lightest colour (treatment 9), simpler 495 

bark. In each panel, clockwise from top left, are: the original image; the map of rapidly 496 

changing luminance; the map of rapidly changing colour; the map of rapidly changing edge 497 

orientations. A mask (black triangle), slightly larger than the target, indicates that the areas 498 

of the maps corresponding to the target were not included in the calculation of each of the 499 

three clutter metrics (luminance, colour and edge orientation). The three clutter maps were 500 

plotted using Matlab’s ‘imagesc’ function, which uses a heatmap to indicates a increasing 501 

value of the metric at each pixel, from blue (‘cool’) through green, yellow, to white (‘hottest’). 502 

Validation of intended effect of Treatment 503 
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The different shades of lightness (avian luminance equivalent) of the targets were based on 504 

the analysis of the bark of 1000 oak trees in the year before the experiment. However, as 505 

photographs were taken of all targets in situ, we could validate that the manipulation had the 506 

intended effect. Figure S1 shows that it did. 507 

 508 

 509 

 510 

Figure S1. Boxplot of the contrast between each target and the bark of the tree on which it 511 

was attached, expressed as the double cone catch for the target minus the double cone 512 

catch for the background (so a negative value means that the target is darker than the 513 

background). The double cone catch is standardised to lie between 0 (0% reflectance, or 514 

black) and 1 (100% reflectance, or white). Thick horizontal lines represent medians, boxes 515 

span the inter-quartile range, and ‘whiskers’ run to the first point within 1.5 inter-quartile 516 

ranges from the box. Circles are potential outliers. 517 

 518 

We can also check that there was no unexpected confound between target-background 519 

luminance contrast (as manipulated by our experiment) and the orientation clutter metric of 520 

background complexity. There was no correlation (r = 0.03, 95% c.i. -0.01 to 0.07, d.f. = 521 

2245, p = 0.118), nor for luminance clutter (r = 0.03, 95% c.i. -0.07 to 0.01, d.f. = 2245, p = 522 

0.197). 523 
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 524 

Tables S1 to S4, which follow, comprise different components of the same, stepwise, mixed 525 

effects Cox regression of mortality rates with respect to Treatment and the three clutter 526 

metrics (luminance, colour and orientation). 527 

 528 

Table S1.  Analysis of mortality rates using mixed effects Cox regression 1. 529 

Stepwise simplification process starting with a model including the fixed effects Treatment (9 530 

levels), the three covariates luminance clutter (lum.clutt), colour clutter (col.clutt), orientation 531 

clutter (ori.clutt), and the interaction between Treatment and the three covariates. All three 532 

covariates have been converted to z-scores (mean of 0 and standard deviation of 1), using 533 

R’s ‘scale’ function, to remove collinearity between covariates and their interactions. We use 534 

the R notation for model terms, such that “:” indicates an interaction. All models include the 535 

random effect of Block, but only fixed effects are listed for simplicity. The sequence of term 536 

removal was: interaction terms first and, for interactions of the same order (i.e. all two-way), 537 

the a priori expectation of their (lack of) effect, based on the results of Xiao & Cuthill [1], 538 

namely colour clutter then luminance clutter then orientation clutter. The component main 539 

effects of significant interact terms were always retained. 540 

 541 

Step Model Term removed Chi df p 

1 Treatment + scale(lum.clutt) 
+ scale(col.clutt) + 
scale(ori.clutt) + 
Treatment:scale(lum.clutt) + 
Treatment:scale(col.clutt) + 
Treatment:scale(ori.clutt) 

Treatment:scale(col.clutt) 5.092 8 0.748 

2 Treatment + scale(lum.clutt) 
+ scale(col.clutt) + 
scale(ori.clutt) + 
Treatment:scale(lum.clutt) + 
Treatment:scale(ori.clutt) 

Treatment:scale(lum.clutt) 10.045 8 0.262 

3 Treatment + scale(lum.clutt) 
+ scale(col.clutt) + 
scale(ori.clutt) + 
Treatment:scale(ori.clutt) 

Treatment:scale(ori.clutt) 57.042 8 <0.001 

4 Treatment + scale(lum.clutt) 
+ scale(col.clutt) + 
scale(ori.clutt) + 
Treatment:scale(ori.clutt) 

scale(col.clutt) 0.000 1 0.979 
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5 Treatment + scale(lum.clutt) 
scale(ori.clutt) + 
Treatment:scale(ori.clutt) 

scale(lum.clutt) 22.886 1 <0.001 

 542 

 543 

Table S2.  Analysis of mortality rates using mixed effects Cox regression 2. 544 

Final model (step 5 of Table S1), retaining only significant terms and the main effects 545 

associated with the interaction between orientation clutter and Treatment. Values are the 546 

estimates of the coefficients of each term (Coef) and the associated standard error 547 

(SE(Coef)), the exponential function or odds ratio of the coefficient (exp(Coef)), the z-test for 548 

the difference between the estimated coefficient and zero, and associated p-value. The odds 549 

ratio of 0.866 for the main effect of (standardised) luminance clutter on mortality means that 550 

for every increase in luminance clutter of one standard deviation, mortality is reduced by 551 

13.4% (1 – 0.866). The intercept of the whole model is the mortality rate for treatment 5 (a 552 

luminance close to the mean of all backgrounds) and the contrasts for the main effects of 553 

Treatment therefore are the differences between the mean mortality rate of each level of 554 

Treatment compared to the mean mortality rate of treatment 5. So, for example, the odds 555 

ratio (exp(Coef)) for the main effect contrast of treatment1 indicates that mortality of 556 

treatment 1 (the darkest targets) is, on average, 2.278 times that of treatment 5 (average 557 

bark luminance targets). Analogously, the contrasts for the Treatment by orientation clutter 558 

interaction are the slopes of the effect of orientation clutter within each treatment level, 559 

compared to the slope of the effect of orientation clutter for treatment 5. For example, the 560 

statistically significant odds ratio of 1.789 for the comparison of the slope of orientation 561 

clutter in treatment 1 with that in treatment 5 means that the slope is 78.9% steeper in 562 

treatment 1 than 3. However, this is not because there is a stronger effect in treatment 1 563 

than 5; the opposite in fact, as the slope is close to 1 (not significant) and significantly 564 

negative in treatment 5 (i.e. orientation clutter reduces mortality in treatment 5, but not 565 

treatment 1). This becomes evident in the separate analyses for each level of treatment (see 566 
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Tables S3 and S4 below). We use the R notation for model terms, such that “:” indicates the 567 

interaction term. 568 

 569 

 570 

Fixed effects Coef exp(Coef) SE(Coef) z p 

Treatment1 0.823 2.278 0.106 7.79 <0.001 

Treatment2 0.651 1.917 0.106 6.16 <0.001 

Treatment3 0.264 1.302 0.108 2.44 0.015 

Treatment4 0.048 1.049 0.111 0.43 0.670 

Treatment6 -0.007 0.993 0.111 -0.06 0.950 

Treatment7 0.338 1.403 0.107 3.17 0.002 

Treatment8 0.979 2.662 0.105 9.35 <0.001 

Treatment9 1.316 3.727 0.106 12.4 <0.001 

scale(lum.clutt) -0.143 0.866 0.029 -4.88 <0.001 

scale(ori.clutt) -0.409 0.665 0.083 -4.92 <0.001 

Treatment1:scale(ori.clutt) 0.582 1.789 0.110 5.29 <0.001 

Treatment2:scale(ori.clutt) 0.177 1.194 0.109 1.63 0.100 

Treatment3:scale(ori.clutt) 0.048 1.049 0.117 0.41 0.680 

Treatment4:scale(ori.clutt) 0.139 1.149 0.112 1.24 0.210 

Treatment6:scale(ori.clutt) 0.101 1.106 0.114 0.89 0.380 

Treatment7:scale(ori.clutt) 0.041 1.042 0.111 0.37 0.710 

Treatment8:scale(ori.clutt) 0.395 1.485 0.111 3.56 <0.001 

Treatment9:scale(ori.clutt) 0.394 1.483 0.109 3.63 <0.001 

Random effect StDev     

Block intercept 0.301     

 571 

Table S3.  Analysis of mortality rates using mixed effects Cox regression 3. 572 

Separate mixed model Cox regressions for the effect of orientation clutter within each level 573 

of Treatment. Values are the estimates of the coefficients of each term (Coef) and the 574 

associated standard error (SE(Coef)), the exponential function or odds ratio of the coefficient 575 
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(exp(Coef)), the z-test for the difference between the estimated coefficient and zero, and 576 

associated p-value. The odds ratio of 1.076 for the main effect of (standardised) orientation 577 

clutter on mortality means that for every increase in orientation clutter of one standard 578 

deviation, mortality is increased by 7.6% (1.076 – 1), although this is not significantly 579 

different from an odds ratio of 1; in other words, no effect (on the odds of mortality). All 580 

models include the random effect of Block, but only fixed effects are listed for simplicity. 581 

 582 

Fixed effects Coef exp(Coef) SE(Coef) z p 

Orientation clutter in Treatment1 0.074 1.076 0.075 0.98 0.328 

Orientation clutter in Treatment2 -0.231 0.794 0.074 -3.14 0.002 

Orientation clutter in Treatment3 -0.403 0.668 0.088 -4.57 <0.001 

Orientation clutter in Treatment4 -0.326 0.722 0.085 -3.85 <0.001 

Orientation clutter in Treatment5 -0.456 0.634 0.086 -5.27 <0.001 

Orientation clutter in Treatment6 -0.316 0.729 0.086 -3.67 <0.001 

Orientation clutter in Treatment7 -0.388 0.678 0.083 -4.68 <0.001 

Orientation clutter in Treatment8 0.017 1.017 0.076 0.23 0.820 

Orientation clutter in Treatment9 -0.008 0.992 0.073 -0.11 0.909 

 583 

Table S4.  Analysis of mortality rates using mixed effects Cox regression 4. 584 

Separate mixed model Cox regressions for the effect of luminance clutter within each level of 585 

Treatment. Following the analysis in (a), the final model in (b) does not include the 586 

Treatment by luminance clutter interaction, so there is no justification for treating any of 587 

these slopes as different from the average odds ratio (main effect) in (b) of 0.866. These 588 

separate analyses were carried out purely for the purpose of producing figure 3(b), which 589 

illustrates the effects of contrast clutter as compared with the treatment-dependent effects of 590 

orientation clutter. Values are the estimates of the coefficients of each term (Coef) and the 591 

associated standard error (SE(Coef)), the exponential function or odds ratio of the coefficient 592 

(exp(Coef)), the z-test for the difference between the estimated coefficient and zero, and 593 
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associated p-value. All models include the random effect of Block, but only fixed effects are 594 

listed for simplicity. 595 

 596 

Fixed effects Coef exp(Coef) SE(Coef) z p 

Luminance clutter in Treatment1 -0.108 0.898 0.075 -1.43 0.152 

Luminance clutter in Treatment2 -0.229 0.795 0.075 -3.04 0.002 

Luminance clutter in Treatment3 -0.237 0.789 0.092 -2.59 0.010 

Luminance clutter in Treatment4 -0.110 0.896 0.090 -1.22 0.222 

Luminance clutter in Treatment5 -0.201 0.818 0.091 -2.21 0.027 

Luminance clutter in Treatment6 -0.281 0.755 0.088 -3.18 0.001 

Luminance clutter in Treatment7 -0.213 0.808 0.089 -2.40 0.017 

Luminance clutter in Treatment8 -0.036 0.965 0.077 -0.47 0.640 

Luminance clutter in Treatment9 -0.114 0.893 0.070 -1.63 0.102 

 597 
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