5,648 research outputs found

    Quasi-dark Mode in a Metamaterial for Analogous Electromagnetically-induced Transparency

    Full text link
    We study a planar metamaterial supporting electromagnetically-induced transparency (EIT)-like effect by exploiting the coupling between bright and quasi-dark eigenmodes. The specific design of such a metamaterial consists of a cut-wire (CW) and a single-gap split-ring resonator (SRR). From the numerical and the analytical results we demonstrate that the response of SRR, which is weakly excited by external electric field, is mitigated to be a quasi-dark eigenmode in the presence of strongly radiative CW. This result suggests more relaxed conditions for the realization of devices utilizing the EIT-like effects in metamaterial, and thereby widens the possibilities for many different structural implementations.Comment: 11 pages, 4 figure

    Two-Temperature Intracluster Medium in Merging Clusters of Galaxies

    Full text link
    We investigate the evolution of intracluster medium during a cluster merger, explicitly considering the relaxation process between the ions and electrons by N-body and hydrodynamical simulations. When two subclusters collide each other, a bow shock is formed between the centers of two substructures and propagate in both directions along the collision axis. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. In the post-shock region the energy is transported from the ions to electrons via Coulomb coupling. However, since the energy exchange timescale depends both on the gas density and temperature, distribution of electron temperature becomes more complex than that of the plasma mean temperature, especially in the expanding phase. After the collision of two subclusters, gas outflow occurs not only along the collision axis but also in its perpendicular direction. The gas which is originally located in the central part of the subclusters moves both in the parallel and perpendicular directions. Since the equilibrium timescale of the gas along these directions is relatively short, temperature difference between ions and electrons is larger in the directions tilted by the angles of ±45∘\pm 45^\circ with respect to the collision axis. The electron temperature could be significantly lower that the plasma mean temperature by ∼50\sim 50 % at most. The significance of our results in the interpretation of X-ray observations is briefly discussed.Comment: 20 pages, 11 figures, Accepted for publication in Ap

    Temperature and magnetic field dependences of the elastic constants of Ni-Mn-Al magnetic Heusler alloys

    Get PDF
    We report on measurements of the adiabatic second order elastic constants of the off-stoichiometric Ni54_{54}Mn23_{23}Al23_{23} single crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behaviour of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.Comment: 7 pages, 5 figures. Accepted for publication in Physical the Review

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg

    The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110

    Full text link
    The unified model of active galactic nuclei (AGN) predicts silicate emission features at 10 and 18 microns in type 1 AGN, and such features have now been observed in objects ranging from distant QSOs to nearby LINERs. More surprising, however, is the detection of silicate emission in a few type 2 AGN. By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC 2110, the closest known Seyfert 2 galaxy with silicate emission features, we can constrain the location of the silicate emitting region to within 32 pc of the nucleus. This is the strongest constraint yet on the size of the silicate emitting region in a Seyfert galaxy of any type. While this result is consistent with a narrow line region origin for the emission, comparison with clumpy torus models demonstrates that emission from an edge-on torus can also explain the silicate emission features and 2-20 micron spectral energy distribution of this object. In many of the best-fitting models the torus has only a small number of clouds along the line of sight, and does not extend far above the equatorial plane. Extended silicate-emitting regions may well be present in AGN, but this work establishes that emission from the torus itself is also a viable option for the origin of silicate emission features in active galaxies of both type 1 and type 2.Comment: ApJL, accepte

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations

    The Intrinsic Alignment of Dark Halo Substructures

    Full text link
    We investigate the intrinsic alignments of dark halo substructures with their host halo major-axis orientations both analytically and numerically. Analytically, we derive the probability density distribution of the angles between the minor axes of the substructures and the major axes of their host halos from the physical principles, under the assumption that the substructure alignment on galaxy scale is a consequence of the tidal fields of the host halo gravitational potential. Numerically, we use a sample of four cluster-scale halos and their galaxy-scale substructures from recent high-resolution N-body simulations to measure the probability density distribution. We compare the numerical distribution with the analytic prediction, and find that the two results agree with each other very well. We conclude that our analytic model provides a quantitative physical explanation for the intrinsic alignment of dark halo substructures. We also discuss the possibility of discriminating our model from the anisotropic infall scenario by testing it against very large N-body simulations in the future.Comment: accepted version, ApJL in press, minor revision, 12 pages, 2 figure
    • …
    corecore