8,798 research outputs found
Thermal conductivity and electrical resistivity of porous materials
Process for determining thermal conductivity and electrical resistivity of porous materials is described. Characteristics of materials are identified and used in development of mathematical models. Limitations of method are examined
Fundamental study of transpiration cooling
Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable
The Effects of Cocoa Flavanol Supplementation on Endothelial Function and Exercise Performance
Click the PDF icon to download the abstract
Assessment of alternative strategies for sludge disposal into deep ocean basins off Southern California
The general framework of engineering alternatives for regional ocean sludge disposal is well described in a report by Raksit, and will not be repeated here. The various ocean disposal alternatives are less costly than all land-disposal and incineration/pyrolysis systems studied. Even though ocean sludge disposal is currently contrary to both state and federal regulations, it is hoped that this study will advance our scientific and engineering knowledge of the behavior and effects of sludge discharge in deep water, in case the regulatory policy is reexamined in the future.
With this report we hope we have demonstrated the potential and difficulties of some new modeling techniques for predicting the effects of sludge discharge in the ocean. In the future. we believe it will be possible to formulate policy of ocean sludge discharges with much better case-by-case predictions of impacts for comparison with other alternatives (such as land disposal). not only for the Los Angeles/Orange County areas, but for all coastal urban areas
Anisotropic Dirac fermions in a Bi square net of SrMnBi2
We report the highly anisotropic Dirac fermions in a Bi square net of
SrMnBi2, based on a first principle calculation, angle resolved photoemission
spectroscopy, and quantum oscillations for high-quality single crystals. We
found that the Dirac dispersion is generally induced in the (SrBi)+ layer
containing a double-sized Bi square net. In contrast to the commonly observed
isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a
large momentum-dependent disparity of Fermi velocities of ~ 8. These findings
demonstrate that a Bi square net, a common building block of various layered
pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure
Variations in coastal temperatures on the southern and central California coast
The results of a time series analysis of several years of coastal ocean temperature records are presented for discussion. The records have been analyzed by using digital filtering, covariance and spectral analysis. The low-frequency component of the temperature signal shows a strong seasonal component in southern California. There is little seasonal fluctuation between Point Conception and Pacific Grove. A period of midwinter warming is apparent in southern California. Intermediate frequency components show strong correlations in southern California with the presence of distinct and substantial temperature events occurring almost simultaneously over distances of the order of 200 km. High-frequency components have a large standard deviation in summer (0.8°C) and a low standard deviation in winter (0.4°C); these components are uncorrelated at stations even a few miles apart. Some coastal stations show a strong possible diurnal component; others, including the offshore islands, show no such components. Morro Bay appears to have an extraordinarily large diurnal component of temperature fluctuation. No attempt has been made in this paper to relate these phenomena to other oceanographic or meteorological variables
Interpretations of results from hydraulic modeling of thermal outfall diffusers for the San Onofre Nuclear Power Plant
This report presents and interpretation of results obtained during the hydraulic model study previously documented in "Hydraulic Modeling of Thermal Outfall Diffusers for the San Onofre Nuclear Power Plant" which described the hydraulic laboratory studies conducted to investigate outfall configurations for the thermal discharge from proposed Units 2 and 3 at the San Onofre Nuclear Generating Station, jointly owned by the Southern California Edison Company and San Diego Gas and Electric Company.
A number of different experimental investigations were performed to develop the conceptual design for the new Units 2 and 3 discharge diffusers. The primary reason for the investigations was the new California thermal standards (essentially ambient temperature increment less than 4°F), which in effect precluded the use of shoreline or single outlet discharges for new units and necessitated the use of multiport diffusers.
The result of the investigations of different diffuser concepts was the establishment of a preliminary design for the discharge structures for Units 2 and 3, each consisting of a diffuser 2500 ft long containing 76 discharge nozzles with a nominal discharge velocity of 13 ft/sec. This preliminary design was later modified somewhat by the engineers of the Southern California Edison Company (SCE) in consideration of other factors such as structural requirements, cost, construction problems, and more accurate bathymetric details at the site. As a result the final design for each diffuser contains 63 discharge ports of diameters varying from 21.85 to 23.9 inches. The discharge ports are nozzle-riser assemblies at alternate angles of ±25° with respect to the longitudinal axis of the diffuser and 20° up from horizontal. The nozzles are positioned approximately 6 ft from the ocean bottom. The diffusers are aligned perpendicular to shore and extend from approximately 3500 ft to 8500 ft offshore.
The performance of the final diffuser design was evaluated in a series of confirming tests. The major results will be summarized and discussed in section 3 of this report.
Sections 3 and 4 will also include projections and elaborations on several aspects of the diffuser performance to be expected in the prototype. The possible interactions of the proposed diffuser operation with existing site factors such as ocean currents, water temperature, heat losses, and the existing power plant (Unit 1) will also be discussed in section 4
Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order
Angle resolved photoemission (ARPES) data from the electron doped cuprate
superconductor SmCeCuO shows a much stronger pseudo-gap
or "hot-spot" effect than that observed in other optimally doped -type
cuprates. Importantly, these effects are strong enough to drive the
zone-diagonal states below the chemical potential, implying that d-wave
superconductivity in this compound would be of a novel "nodeless" gap variety.
The gross features of the Fermi surface topology and low energy electronic
structure are found to be well described by reconstruction of bands by a
order. Comparison of the ARPES and optical data from
the sample shows that the pseudo-gap energy observed in optical data is
consistent with the inter-band transition energy of the model, allowing us to
have a unified picture of pseudo-gap effects. However, the high energy
electronic structure is found to be inconsistent with such a scenario. We show
that a number of these model inconsistencies can be resolved by considering a
short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population
Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population.
Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics.
Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18).
Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity
Space-charge-limited flows in the quantum regime
This paper reviews the recent developments of space-charge-limited (SCL) flow or Child-Langmuir (CL) law in the quantum regime. According to the classical CL law for planar diodes, the current density scales as 3/23∕2’s power of gap voltage and to the inverse squared power of gap spacing. When the electron de Broglie wavelength is comparable or larger than the gap spacing, the classical SCL current density is enhanced by a large factor due to electron tunneling and exchange-correlation effects, and there is a new quantum scaling for the current density, which is proportional to the 1/21∕2’s power of gap voltage, and to the inverse fourth-power of gap spacing. It is also found that the classical concepts of the SCL flow such as bipolar flow, transit time, beam-loaded capacitance, emitted charge density, and magnetic insulation are no longer valid in quantum regime. In the quantum regime, there exists a minimum transit time of the SCL flows, in contrast to the classical solution. By including the surface properties of the emitting surface, there is a threshold voltage that is required to obtain the quantum CL law. The implications of the Fowler-Nordheim-like field emission in the presence of intense space charge over the nanometer scale is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87757/2/056701_1.pd
- …